首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3707篇
  免费   396篇
  国内免费   290篇
耳鼻咽喉   11篇
儿科学   101篇
妇产科学   24篇
基础医学   505篇
口腔科学   192篇
临床医学   194篇
内科学   1338篇
皮肤病学   41篇
神经病学   204篇
特种医学   13篇
外科学   209篇
综合类   207篇
现状与发展   4篇
预防医学   801篇
眼科学   20篇
药学   241篇
中国医学   152篇
肿瘤学   136篇
  2024年   41篇
  2023年   244篇
  2022年   531篇
  2021年   664篇
  2020年   459篇
  2019年   330篇
  2018年   234篇
  2017年   243篇
  2016年   192篇
  2015年   175篇
  2014年   240篇
  2013年   302篇
  2012年   108篇
  2011年   74篇
  2010年   55篇
  2009年   57篇
  2008年   61篇
  2007年   45篇
  2006年   47篇
  2005年   37篇
  2004年   35篇
  2003年   23篇
  2002年   18篇
  2001年   14篇
  2000年   11篇
  1999年   19篇
  1998年   13篇
  1997年   14篇
  1996年   12篇
  1995年   8篇
  1994年   9篇
  1993年   4篇
  1992年   6篇
  1991年   9篇
  1990年   6篇
  1989年   7篇
  1988年   7篇
  1987年   4篇
  1986年   5篇
  1985年   3篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   4篇
  1979年   4篇
  1978年   2篇
  1977年   3篇
  1976年   3篇
  1968年   1篇
  1907年   1篇
排序方式: 共有4393条查询结果,搜索用时 93 毫秒
31.
It is now well known how the microbiota can positively or negatively influence humans health, depending on its composition. The microbiota’s countless beneficial effects have allowed it to be defined as a genuine symbiont for our species. In an attempt to positively influence the microbiota, research has focused on probiotics and prebiotics. Probiotics are viable beneficial bacteria of various strains. Prebiotics are specific substances able to favor the development of advantageous bacteria strains. Postbiotics are a new category of compounds capable of affecting the microbiota. According to the different definitions, postbiotics include both nonviable bacteria and substances deriving from bacterial metabolism. Postbiotics are particularly promising in pediatric settings, as they offer some advantages over probiotics, including the absence of the risk of intestinal translocation or worsening of local inflammation. For these reasons, their use in fragile population categories such as newborns, and even more prematures, seems to be the best solution for improving microbiota’s health in this population. This narrative review aims to collect the research conducted so far on postbiotics’ potential in the first stages of life.  相似文献   
32.
The use of olive pomace could represent an innovative and low-cost strategy to formulate healthier and value-added foods, and bakery products are good candidates for enrichment. In this work, we explored the prebiotic potential of bread enriched with Polyphenol Rich Fiber (PRF), a defatted olive pomace byproduct previously studied in the European Project H2020 EcoProlive. To this aim, after in vitro digestion, the PRF-enriched bread, its standard control, and fructo-oligosaccharides (FOS) underwent distal colonic fermentation using the in vitro colon model MICODE (multi-unit colon gut model). Sampling was done prior, over and after 24 h of fermentation, then metabolomic analysis by Solid Phase Micro Extraction Gas Chromatography Mass Spectrometry (SPME GCMS), 16S-rDNA genomic sequencing of colonic microbiota by MiSeq, and absolute quantification of main bacterial species by qPCR were performed. The results indicated that PRF-enriched bread generated positive effects on the host gut model: (i) surge in eubiosis; (ii) increased abundance of beneficial bacterial groups, such as Bifidobacteriaceae and Lactobacillales; (iii) production of certain bioactive metabolites, such as low organic fatty acids; (iv) reduction in detrimental compounds, such as skatole. Our study not only evidenced the prebiotic role of PRF-enriched bread, thereby paving the road for further use of olive by-products, but also highlighted the potential of the in vitro gut model MICODE in the critical evaluation of functionality of food prototypes as modulators of the gut microbiota.  相似文献   
33.
The prebiotic effect of high β-glucan barley (HGB) flour on the innate immune system of high-fat model mice was investigated. C57BL/6J male mice were fed a high-fat diet supplemented with HGB flour for 90 days. Secretory immunoglobulin A (sIgA) in the cecum and serum were analyzed by enzyme-linked immunosorbent assays (ELISA). Real-time PCR was used to determine mRNA expression levels of pro- and anti-inflammatory cytokines such as interleukin (IL)-10 and IL-6 in the ileum as well as the composition of the microbiota in the cecum. Concentrations of short-chain fatty acids (SCFAs) and organic acids were analyzed by GC/MS. Concentrations of sIgA in the cecum and serum were increased in the HGB group compared to the control. Gene expression levels of IL-10 and polymeric immunoglobulin receptor (pIgR) significantly increased in the HGB group. HGB intake increased the bacterial count of microbiota, such as Bifidobacterium and Lactobacillus. Concentrations of propionate and lactate in the cecum were increased in the HGB group, and a positive correlation was found between these organic acids and the IL-10 expression level. Our findings showed that HGB flour enhanced immune function such as IgA secretion and IL-10 expression, even when the immune system was deteriorated by a high-fat diet. Moreover, we found that HGB flour modulated the gut microbiota, which increased the concentration of SCFAs, thereby stimulating the immune system.  相似文献   
34.
The incidence of obesity, which is closely associated with the gut microbiota and chronic inflammation, has rapidly increased in the past 40 years. Therefore, the probiotic-based modification of the intestinal microbiota composition has been developed as a strategy for the treatment of obesity. In this study, we selected four Bifidobacterium adolescentis strains isolated from the feces of newborn and elderly humans to investigate whether supplementation with B. adolescentis of various origins could alleviate obesity in mice. Male C57BL/6J mice fed a high-fat diet (HFD, 60% energy as fat) received one of the following 14-week interventions: (i) B. adolescentis N4_N3, (ii) B. adolescentis Z25, (iii) B. adolescentis 17_3, (iv) B. adolescentis 2016_7_2, and (v) phosphate-buffered saline. The metabolic parameters, thermogenesis, and immunity of all treated mice were measured. Cecal and colonic microbial profiles were determined by 16S rRNA gene sequencing. Intestinal concentrations of short-chain fatty acids (SCFAs) were measured by gas chromatography-mass spectrometry (GC-MS). The B. adolescentis strains isolated from the feces of elderly humans (B. adolescentis Z25, 17_3, and 2016_7_2) decreased the body weight or weight gain of mice, whilst the strain isolated from the newborn (B. adolescentis N4_N3) increased the body weight of mice. The B. adolescentis strains isolated from the elderly also increased serum leptin concentrations and induced the expression of thermogenesis- and lipid metabolism-related genes in brown adipose tissue. All the B. adolescentis strains alleviated inflammations in the spleen and brain and modified the cecal and colonic microbiota. Particularly, all strains reversed the HFD-induced depletion of Bifidobacterium and reduced the development of beta-lactam resistance. In addition, the B. adolescentis strains isolated from the elderly increased the relative abundances of potentially beneficial genera, such as Bacteroides, Parabacteroides, and Faecalibaculum. We speculate that such increased abundance of commensal bacteria may have mediated the alleviation of obesity, as B. adolescentis supplementation decreased the intestinal production of SCFAs, thereby reducing energy delivery to the host mice. Our results revealed that certain strains of B. adolescentis can alleviate obesity and modify the gut microbiota of mice. The tested strains of B. adolescentis showed different effects on lipid metabolism and immunity regulation, with these effects related to whether they had been isolated from the feces of newborn or elderly humans. This indicates that B. adolescentis from different sources may have disparate effects on host health possibly due to the transmission of origin-specific functions to the host.  相似文献   
35.
Intestinal health relies on the association between the mucosal immune system, intestinal barrier and gut microbiota. Bioactive components that affect the gut microbiota composition, epithelial physical barrier and intestinal morphology were previously studied. The current systematic review evaluated evidence of anthocyanin effects and the ability to improve gut microbiota composition, their metabolites and parameters of the physical barrier; this was conducted in order to answer the question: “Does food source or extract of anthocyanin promote changes on intestinal parameters?”. The data analysis was conducted following the PRISMA guidelines with the search performed at PubMed, Cochrane and Scopus databases for experimental studies, and the risk of bias was assessed by the SYRCLE tool. Twenty-seven studies performed in animal models were included, and evaluated for limitations in heterogeneity, methodologies, absence of information regarding allocation process and investigators’ blinding. The data were analyzed, and the anthocyanin supplementation demonstrated positive effects on intestinal health. The main results identified were an increase of Bacteroidetes and a decrease of Firmicutes, an increase of short chain fatty acids production, a decrease of intestinal pH and intestinal permeability, an increase of the number of goblet cells and tight junction proteins and villi improvement in length or height. Thus, the anthocyanin supplementation has a potential effect to improve the intestinal health. PROSPERO (CRD42020204835).  相似文献   
36.
β-glucan consumption is known for its beneficial health effects, but the mode of action is unclear. While humans and mice lack the required enzymes to digest β-glucans, certain intestinal microbes can digest β-glucans, triggering gut microbial changes. Curdlan, a particulate β-glucan isolated from Alcaligenes faecalis, is used as a food additive. In this study we determined the effect of curdlan intake in mice on the intestinal microbiota and dextran sodium sulfate (DSS)-induced intestinal inflammation. The effect of curdlan on the human intestinal microbiota was assessed using i-screen, an assay for studying anaerobic microbial interactions. Mice received oral gavage with vehicle or curdlan for 14 days followed by DSS for 7 days. The curdlan-fed group showed reduced weight loss and colonic inflammation compared to the vehicle-fed group. Curdlan intake did not induce general microbiota community changes, although a specific Bifidobacterium, closely related to Bifidobacterium choerinum, was observed to be 10- to 100-fold more prevalent in the curdlan-fed group under control and colitis conditions, respectively. When tested in i-screen, curdlan induced a global change in the microbial composition of the healthy intestinal microbiota from a human. Overall, these results suggest that dietary curdlan induces microbiota changes that could reduce intestinal inflammation.  相似文献   
37.
Irritable Bowel Syndrome (IBS) is a chronic functional gastrointestinal disorder characterized by abdominal pain associated with defecation or a change in bowel habits. Gut microbiota, which acts as a real organ with well-defined functions, is in a mutualistic relationship with the host, harvesting additional energy and nutrients from the diet and protecting the host from pathogens; specific alterations in its composition seem to play a crucial role in IBS pathophysiology. It is well known that diet can significantly modulate the intestinal microbiota profile but it is less known how different nutritional approach effective in IBS patients, such as the low-FODMAP diet, could be responsible of intestinal microbiota changes, thus influencing the presence of gastrointestinal (GI) symptoms. The aim of this review was to explore the effects of different nutritional protocols (e.g., traditional nutritional advice, low-FODMAP diet, gluten-free diet, etc.) on IBS-D symptoms and on intestinal microbiota variations in both IBS-D patients and healthy subjects. To date, an ideal nutritional protocol does not exist for IBS-D patients but it seems crucial to consider the effect of the different nutritional approaches on the intestinal microbiota composition to better define an efficient strategy to manage this functional disorder.  相似文献   
38.
Choline is metabolized by the gut microbiota into trimethylamine (TMA), the precursor of pro-atherosclerotic molecule trimethylamine N-oxide (TMAO). A reduction in TMA formation has shown cardioprotective effects, and some phytochemicals may reduce TMA formation. This study aimed to develop an optimized, high-throughput anaerobic fermentation methodology to study the inhibition of choline microbial metabolism into TMA by phenolic compounds with healthy human fecal starter. Optimal fermentation conditions were: 20% fecal slurry (1:10 in PBS), 100 µM choline, and 12 h fermentation. Additionally, 10 mM of 3,3-dimethyl-1-butanol (DMB) was defined as a positive TMA production inhibitor, achieving a ~50% reduction in TMA production. Gallic acid and chlorogenic acid reported higher TMA inhibitory potential (maximum of 80–90% TMA production inhibition), with IC50 around 5 mM. Neither DMB nor gallic acid or chlorogenic acid reduced TMA production through cytotoxic effects, indicating mechanisms such as altered TMA-lyase activity or expression.  相似文献   
39.
Prevalence of anaemia among Nigerian toddlers is reported to be high, and may cause significant morbidity, affects brain development and function, and results in weakness and fatigue. Although, iron fortification can reduce anaemia, yet the effect on gut microbiota is unclear. This open-label randomised study in anaemic malnourished Nigerian toddlers aimed to decrease anaemia without affecting pathogenic gut bacteria using a multi-nutrient fortified dairy-based drink. The test product was provided daily in different amounts (200, 400 or 600 mL, supplying 2.24, 4.48 and 6.72 mg of elemental iron, respectively) for 6 months. Haemoglobin, ferritin, and C-reactive protein concentrations were measured to determine anaemia, iron deficiency (ID) and iron deficiency anaemia (IDA) prevalence. Faecal samples were collected to analyse gut microbiota composition. All three dosages reduced anaemia prevalence, to 47%, 27% and 18%, respectively. ID and IDA prevalence was low and did not significantly decrease over time. Regarding gut microbiota, Enterobacteriaceae decreased over time without differences between groups, whereas Bifidobacteriaceae and pathogenic E. coli were not affected. In conclusion, the multi-nutrient fortified dairy-based drink reduced anaemia in a dose-dependent way, without stimulating intestinal potential pathogenic bacteria, and thus appears to be safe and effective in treating anaemia in Nigerian toddlers.  相似文献   
40.
Background: A disequilibrium of the gut microbial community has been closely associated with systemic inflammation and metabolic syndromes including type 2 diabetes. While low fibre and high fat diets may lead to dysbiosis of the gut microbiome as a result of the loss of useful microbes, it has been reported that a high fibre diet may prevent the fermentation of protein and may promote eubiosis of gut microbiota. Aim: This review aims to evaluate the effect of dietary fibre (DF) on gut microbiota, lipid profile, and inflammatory markers in patients with type 2 diabetes. Methods: The PRISMA framework was relied on to conduct this systematic review and meta-analysis. Searches were carried out using electronic databases and reference list of articles. Results: Eleven studies were included in the systematic review, while ten studies were included in the meta-analysis. The findings revealed five distinct areas including the effects of DF on (a) gut microbiota (122 participants); (b) lipopolysaccharides (LPS, 79 participants) and lipopolysaccharides binding protein (LBP, 81 participants); (c) lipid profile; (d) inflammatory markers; and (e) body mass index (BMI, 319 participants). The relative abundance of Bifidobacterium increased by 0.73 (95% CI: 0.57, 0.89) in the DF group in contrast to the control (p < 0.05). With respect to LPS, the level was lower in the DF group than the control and the difference was significant (p < 0.05). The standardised mean difference for LPS was −0.45 (95% CI: −0.90, −0.01) although the difference between the two groups in relation to LBP was not significant (p = 0.08) and the mean difference was 0.92 (95% CI: −0.12, 1.95). While there was a decrease of −1.05 (95% CI: −2.07, −0.02) with respect to total cholesterol (356 participants) in the DF group as compared with the control (p < 0.05), both groups were not significantly different (p > 0.05) in the other lipid parameters. The difference between the groups was significant (p < 0.05) in relation to C-reactive protein, and the mean difference was 0.43 (95% CI: 0.02, 0.84). This could be due to the short duration of the included studies and differences in participants’ diets including the amount of dietary fibre supplements. However, the groups were not significantly different (p > 0.05) with respect to the other inflammatory markers. The meta-analysis of the BMI showed that the DF group decreased by −0.57 (95% CI: −1.02, −0.12) as compared with the control and this was significant (p < 0.01). Conclusion: DF significantly (p < 0.05) increased the relative abundance of Bifidobacterium and significantly decreased (p < 0.05) LPS, total cholesterol, and BMI as compared with the control. However, DF did not seem to have an effect that was significant on LBP, triglyceride, HDL cholesterol, LDL cholesterol, IL-6, TNF-α, adiponectin, and leptin. These findings have implications for public health in relation to the use of dietary fibre in nutritional interventions and as strategies for managing type 2 diabetes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号