Arylamine N-acetyltransferases (NAT) are important enzymes involved in the metabolic activation of aromatic and heterocyclic amines and inhibitors of NAT enzymes may be valuable as chemopreventive agents. Phytochemicals including cinnamic acid derivatives, various classes of flavonoids and coumarins were tested for the inhibitory activity on NAT1 and NAT2 from human liver and the human cholangiocarcinoma cell line: KMBC cells. Assays were performed using p-aminobenzoic acid and sulfamethazine as selective substrates for NAT1 and NAT2, respectively. NAT1 and NAT2 activities were present in liver cytosol. However, the KMBC cells showed only NAT1 activity. There was a marked difference in the ability of the test chemicals to inhibit NAT1 and NAT2. Caffeic acid, ferulic acid, gallic acid and EGCG inhibited NAT1 but not NAT2, whereas scopuletin and curcumin inhibited NAT2 but not NAT1. Quercetin, kaemferol and other flavonoids, except epicatechin and silymarin, inhibited both enzymes. The kinetics of inhibition of NAT1 by caffeic acid, EGCG and quercetin were of the non-competitive type, whereas that of NAT2 by quercetin, curcumin and kaemferol was also of the non-competitive type. The most potent inhibitor was quercetin, which has the inhibitory constants for NAT1 and NAT2 of 48.6?±?17.3 and 10.0?±?1.8?µM, respectively. 相似文献
The aim of the present investigation was to develop and study topical gel delivery of curcumin for its anti-inflammatory effects. Carbopol 934P (CRB) and hydroxypropylcellulose (HPC) were used for the preparation of gels. The penetration enhancing effect of menthol (0–12.5% w/w) on the percutaneous flux of curcumin through the excised rat epidermis from 2% w/w CRB and HPC gel system was investigated. All the prepared gel formulations were evaluated for various properties such as compatibility, drug content, viscosity, in vitro skin permeation, and anti-inflammatory effect. The drug and polymers compatibility was confirmed by Differential scanning calorimetry and infrared spectroscopy. The percutaneous flux and enhancement ratio of curcumin across rat epidermis was enhanced markedly by the addition of menthol to both types of gel formulations. Both types of developed topical gel formulations were free of skin irritation. In anti-inflammatory studies done by carrageenan induced rat paw oedema method in wistar albino rats, anti-inflammatory effect of CRB, HPC and standard gel formulations were significantly different from control group (P < 0.05) whereas this effect was not significantly different for CRB and HPC gels formulations to that of standard (diclofenac gel) formulation (P > 0.05). CRB gel showed better % inhibition of inflammation as compared to HPC gel. 相似文献
Glutathione S-transferases (GSTs) are important phase II drug-metabolizing enzymes that play a major role in protecting cells from the toxic insults of electrophilic compounds. Curcumin, a promising chemotherapeutic agent, inhibits human GSTA1-1, GSTM1-1, and GSTP1-1 isoenzymes.
In the present study, the effect of three series of curcumin analogues, 2,6-dibenzylidenecyclohexanone (A series), 2,5-dibenzylidenecyclopentanone (B series), and 1,4-pentadiene-3-one (C series) substituted analogues (n?=?34), on these three human GST isoenzymes, and on human and rat liver cytosolic GSTs, was investigated using 1-chloro-2,4-dinitrobenzene (CDNB) as a substrate.
Most of the 34 curcumin analogues showed less potent inhibitory activities towards GSTA1-1, GSTM1-1, and GSTP1-1 than the parent curcumin. Compounds B14 and C10 were the most potent inhibitors of GSTA1-1 and human liver cytosolic GSTs, with IC50 values of 0.2–0.6 μM. The most potent inhibitors of GSTM1-1 were C1, C3 and C10, with IC50 values of 0.2–0.7 μM. Similarly, GSTP1-1 was predominantly strongly inhibited by compounds of the C series C0, C1, C2 C10 and A0, with IC50 values of 0.4–4.6 μM. Compounds in the B series showed no significant inhibition of GSTP1-1.
Molecular Operating Environment (MOE) program-based quantitative structure–activity relationship (QSAR) analyses have also suggested the relevance of Van der Waals surface area and compound lipophilicity factors for the inhibition of GSTA1-1 and GSTM1-1 and partial charge factors for GSTP1-1. These results may be useful in the design and synthesis of curcumin analogues with either more or less potency for GST inhibition.
Curcumin isolated from turmeric (Curcuma longa L., Zingaberaceae) root was found to be anti-angiogenic in a human tissue-based angiogenesis assay. As a liposoluble compound, curcumin can be extracted from turmeric root with organic solvents such as ethanol or acetone. Curcumin in its pure form has poor solubility in water, potentially limiting its medicinal use for humans when it is taken orally or injected. This study attempted to investigate the possibility of improving curcumin's low solubility using an extract as a carrier. This would maintain anti-angiogenic properties with improved water-solubility. Experiments were undertaken to determine the extraction efficiency of different solvents for curcumin. Anti-angiogenic activities of curcumin in its pure form and in extracts were compared as a general trend ethanol or acetone was more efficient in extracting curcumin than their aqueous counterparts. Using 50 and 70% aqueous ethanol as well as 70% aqueous acetone yielded significantly more turmeric extracts by weight than absolute acetone, which was the lowest. Conversely, turmeric extracts extracted with 95% ethanol and absolute acetone contained significantly higher curcumin concentrations than water extract, which was the lowest. Combining the higher extract yield and highest curcumin concentrations in the extract, 95% ethanol gave the highest yield of single entity curcumin. In the angiogenesis assay, pure curcumin at the concentration of 85 μ M (in 1% ethanol v/v) in the culture medium totally suppressed angiogenic responses. In contrast, a curcumin concentration of 18.5 μ M (in the form of 100 μ g/ml turmeric extract) achieved the same total inhibition of angiogenesis in culture. This nearly 5 fold gap reflected the unaccounted involvement of other antiangiogenic compounds including curcumin derivatives, and/or enhancement of curcumin by non-antiangiogenic compounds in the extract. This finding suggests that curcumin in the form of extracts be potentially more pharmacologically active than pure curcumin. Further investigations of this hypothesis and possible interactions are warranted. 相似文献