Introduction: Acid suppressant medications (ASMs), such as proton pump inhibitors and histamine-2 receptor antagonists, are used often and throughout the lifespan. These medications have been linked to the development of a variety of allergic diseases.
Areas covered: This review discusses prior studies investigating the association between acid ASM exposure and the development of allergic diseases. We performed a thorough literature search to identify potentially relevant studies for inclusion. In summary, exposure to these medications prenatally, in childhood and in adulthood, may increase the risk of allergic diseases. The current evidence is limited by primarily observational study design and potential bias and confounding. The mechanism of action is not yet known, but there are several proposed theories.
Expert commentary: There is a growing body of evidence to support that exposure to acid ASMs increases the risk of developing allergic diseases. Further research is needed to not only clarify this relationship but to define the potential mechanism of action. If further research confirms these observations, we believe that could warrant changes in the patterns of prescribing and use of acid ASMs. 相似文献
It is indisputable that modern life is enabled by the use of materials in its technologies. Those technologies do many things very well, largely because each material is used for purposes to which it is exquisitely fitted. The result over time has been a steady increase in product performance. We show that this materials complexity has markedly increased in the past half-century and that elemental life cycle analyses characterize rates of recycling and loss. A further concern is that of possible scarcity of some of the elements as their use increases. Should materials availability constraints occur, the use of substitute materials comes to mind. We studied substitution potential by generating a comprehensive summary of potential substitutes for 62 different metals in all their major uses and of the performance of the substitutes in those applications. As we show herein, for a dozen different metals, the potential substitutes for their major uses are either inadequate or appear not to exist at all. Further, for not 1 of the 62 metals are exemplary substitutes available for all major uses. This situation largely decouples materials substitution from price, thereby forcing material design changes to be primarily transformative rather than incremental. As wealth and population increase worldwide in the next few decades, scientists will be increasingly challenged to maintain and improve product utility by designing new and better materials, but doing so under potential constraints in resource availability.The degree to which the materials of modern technology enable and improve our state of life is not adequately appreciated. A century ago, or even half a century ago, less than 12 materials were in wide use: wood, brick, iron, copper, gold, silver, and a few plastics. Today, however, substantial materials diversity in products of every kind is the rule rather than the exception. [A modern computer chip, for example, employs more than 60 different elements (1).] This use of materials is not a whim of the designer, but a carefully calculated effort to achieve increasingly high performance in products simple to complex. 相似文献
Sensitization to house dust mite (Dermatophagoides pteronyssinus) is a considerable risk factor for the progression of allergic disease. The group 2 allergen from Dermatophagoides pteronyssinus, Der p 2, is considered a major one in patients with specific immunoglobulin E (IgE) to Der p 2. Der p 2 has structural homology with myeloid differentiation 2 (MD-2), which is involved in the lipopolysaccharide-binding component of the Toll-like receptor 4 signaling pathway and the development of inflammation. The aim of this study was to examine the genetic association of single nucleotide polymorphisms (SNPs) in the promoter region of MD-2 with Der p 2-sensitive allergy.
Methods
We investigated associations between cohort''s characteristics, including 280 allergic and 80 healthy subjects by examining total IgE, eosinophils, D. pteronyssinus-specific IgE, Der p 2-specific IgE, the number of IgE-producing B cells induced by Der p 2, and the odds ratio of allergic symptoms.
Results
Based on the 1,000 genome project data, the minor allele frequencies of the rs1809441 and rs1809442 are 0.467 and 0.474, respectively. However, the correlation of linkage disequilibrium (LD) between these 2 SNPs is D''=1, the genotype frequencies of the 2 MD-2 (LY96) SNPs (rs1809441 and rs1809442) that are located nearby were significantly different between allergic and health subjects: the TT genotype of rs1809441 and the GG genotype of rs1809442 were more frequent in allergic subjects than in healthy subjects (16.1% vs 2.5% in both genotypes). The allergic patients with these genotypes exhibited significantly higher levels of D. pteronyssinus-specific IgE and Der p 2-specific Ig E, and a larger number of Der p 2-activated B cells. In addition, these 2 SNPs in the MD-2 promoter region were significantly associated with the prevalence of nasal, skin, and asthmatic allergic symptoms.
Conclusions
Our results indicated that 2 SNPs in the MD-2 promoter region were significantly associated with Der p 2-specific Ig E, and thereby suggest that these SNPs may play a major role in susceptibility to Der p 2-triggered immune responses in a Taiwanese population. 相似文献
Background: Hexyl cinnamal (HCA) is a widely used fragrance chemical, the low skin-sensitizing potency of which has made it a common choice for the use as a positive control for predictive toxicology assays. However, HCA is commonly negative in current candidate in vitro alternatives test methods.
Objective: To review the evidence that HCA is a classifiable skin sensitizer against the standards set by the Globally Harmonized Scheme (GHS), and determine whether it represents an appropriate choice for a positive control substance for predictive testing.
Methods: Using the GHS criteria, mechanistic data, and in vitro, in vivo and human evidence relating to HCA and skin sensitization have been reviewed.
Results: The chemistry of HCA is consistent with potential for skin sensitization and predictive in vivo test data support this conclusion. However, the human data are relatively sparse, consistent with HCA possessing a low capacity to induce skin sensitization under conditions of consumer exposures.
Conclusions: Using GHS criteria (and applying a precautionary approach) HCA would classify as a weaker skin sensitizer than predicted by the local lymph node assay (LLNA). However, given the human experience, it is necessary to consider whether HCA is the most appropriate choice for use as a positive regulatory control. 相似文献
Today’s fragrances are present in more than just perfumes, having become ubiquitous in skin care products such as creams, shampoos, sun tan lotion and deodorants. While aromatics can arouse the senses, aromatic compounds applied to skin can also cause allergic contact dermatitis. This article describes diagnosis, limitations of patch testing for fragrance mix 1 and fragrance mix 2, the relevance of fragrance concentration in products, use testing of common consumer products and our current recommendations in regards to the management of fragrance contact allergy. 相似文献
Lecithin-dependent thermolabile hemolysin (LDH) is a virulence factor excreted by Vibrio parahaemolyticus, a marine bacterium that causes important losses in shrimp farming. In this study, the function of LDH was investigated through its inhibition by metal ions (Mg2+, Ca2+, Mn2+, Co2+, Ni2+ and Cu2+) and chemical modification reagents: β-mercaptoethanol (βME), phenylmethylsulfonyl fluoride (PMSF) and diethyl pyrocarbonate (DEPC). LDH was expressed in the Escherichia coli strain BL-21, purified under denaturing conditions, and the enzymatic activity was evaluated. Cu2+, Ni2+, Co2+ and Ca2+ at 1 mmol/L inhibited the LDH esterase activity by 20–95%, while Mg2+ and Mn2+ slightly increased its activity. Additionally, PMSF and DEPC at 1 mmol/L inhibited the enzymatic activity by 40% and 80%, respectively. Dose-response analysis showed that DEPC was the best-evaluated inhibitor (IC50 = 0.082 mmol/L), followed by Cu2+ > Co2+ > Ni2+ and PMSF (IC50 = 0.146–1.5 mmol/L). Multiple sequence alignment of LDH of V. parahaemolyticus against other Vibrio species showed that LDH has well-conserved GDSL and SGNH motifs, characteristic of the hydrolase/esterase superfamily. Additionally, the homology model showed that the conserved catalytic triad His-Ser-Asp was in the LDH active site. Our results showed that the enzymatic activity of LDH from V. parahaemolyticus was modulated by metal ions and chemical modification, which could be related to the interaction with catalytic amino acid residues such as Ser153 and/or His 393. 相似文献
Metal rubber has been extensively used in recent years due to its several unique properties, especially in adverse environments. Although many experimental studies have been conducted, theoretical research on metal rubber is still in its infancy. In this work, a dynamic model for the nonlinear characteristics of pot-shaped metal rubber is established on the basis of the asymmetric dynamic model of the wire rope shock absorber and the trace method model. In addition, the corresponding parameters in the model are identified based on the parameter-separation method. The theoretical hysteresis loop obtained using the model and the measured hysteresis loop agree with each other. The results show that the asymmetric dynamic model can better describe the asymmetric dynamic characteristics of pot-shaped metal rubber. Furthermore, a pot-shaped metal rubber vibration reduction system is built to further verify the correctness of the model. This study provides an experimental reference and a theoretical basis for the practical application of pot-shaped metal rubber in the field of three-dimensional vibration reduction. 相似文献