首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   337篇
  免费   58篇
  国内免费   16篇
基础医学   114篇
口腔科学   21篇
临床医学   61篇
内科学   75篇
皮肤病学   1篇
神经病学   8篇
特种医学   3篇
外科学   15篇
综合类   48篇
眼科学   2篇
药学   58篇
中国医学   4篇
肿瘤学   1篇
  2023年   5篇
  2022年   24篇
  2021年   40篇
  2020年   13篇
  2019年   19篇
  2018年   29篇
  2017年   17篇
  2016年   26篇
  2015年   23篇
  2014年   45篇
  2013年   59篇
  2012年   17篇
  2011年   25篇
  2010年   8篇
  2009年   18篇
  2008年   10篇
  2007年   14篇
  2006年   5篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
  1998年   2篇
  1997年   4篇
  1996年   1篇
  1993年   1篇
排序方式: 共有411条查询结果,搜索用时 31 毫秒
61.
Recrystallization is one of the main problems concerning the stability of solid dispersions. Different analytical methods were applied showing that no recrystallization occurred after treating melt extruded solid dispersions with 17β-Estradiol as the model drug with heat or water vapor. A skillful choice of excipients—a combination of polymers and additives—could be the reason for improving the stability. The requirements of the USP 23 for Estradiol tablets of 75% dissolved drug after 60 min were fulfilled after storing the tablets for 6 months at 40°C/75% RH. By observing the change in glass transition temperature, DSC analysis showed that the solid dispersions were stable against thermal stress. Isothermal microcalorimetry as well as moisture absorption gravimetry were methods to prove the stability of the solid dispersions against water vapor.  相似文献   
62.
Introduction: During the last decade, the use of electrospinning for the fabrication of nanofibrous materials loaded with antibacterial agents or anticancer drugs for biomedical applications such as dressing materials for wound treatment and for local cancer treatment has evoked considerable interest. Different drugs can be easily incorporated in electrospun materials and their release profile can be controlled through changes in the fibers morphology, porosity and composition. The large specific surface area of the electrospun materials, the possibility for gradual release and site-specific local delivery of the active compounds lead to cytotoxicity decrease and enhancement of the therapeutic effect of the drugs.

Areas covered: The most recent studies on drug-loaded electrospun mats as materials for wound dressing or local cancer treatment are briefly summarized.

Expert opinion: The possibility for local drug delivery in cancer therapy using electrospun materials allows avoiding the oral or systemic drug application, thus leading to decrease in some deleterious side effects. The recent achievements in the comprehension of the electrospinning, in control over the surface chemical composition of the electrospun materials, and in diversifying the applied approaches and techniques, propound larger prospects for creating new materials for wound dressing and local cancer treatment.  相似文献   
63.
背景:已有研究表明向生物惰性碳纳米纤维中引入具有成骨活性的β-磷酸三钙纳米粒子,可显著提高碳纳米纤维的生物活性,而某些二价离子掺杂的β-磷酸三钙也被报道能够促进新骨的生成. 目的:考察适量锌离子、镁离子的引入对β-磷酸三钙@碳纳米纤维材料形貌及成骨活性的影响. 方法:以聚丙烯腈、磷酸三乙酯、硝酸钙、硝酸锌、硝酸镁等为原料,采用溶胶-凝胶、静电纺丝与原位烧结碳化相结合的方法制备锌或镁离子掺杂的β-磷酸三钙@碳纳米纤维材料.将所得复合纳米纤维材料及未掺杂锌或镁离子掺杂的β-磷酸三钙@碳纳米纤维与成骨细胞MC3T3-E1体外共培养,观察细胞的黏附、增殖和形态变化. 结果与结论:β-磷酸三钙@碳纳米纤维形貌均匀,表面可见直径为数十纳米的无机粒子均匀分布,锌或镁离子的引入对纤维形貌无明显影响;复合纤维主要由碳元素组成,钙、锌、镁元素等均匀分布于纤维中,且各元素相对含量与投料比相符.与未掺杂锌或镁离子的β-磷酸三钙@碳纳米纤维相比,MC3T3-E1成骨细胞更易在锌或镁离子掺杂的β-磷酸三钙@碳纳米纤维材料表面黏附,细胞增殖和铺展状态也更好.表明在β-磷酸三钙@碳纳米纤维的基础上,引入锌或镁离子掺杂,能进一步提高材料的细胞相容性及生物活性.  相似文献   
64.
目的用油包水乳液静电纺丝法制备并评价包载有L-肉毒碱的聚乙二醇-b-聚ε-己内酯电纺纤维毡。方法将L-肉毒碱溶解在水中为水相,将聚乙二醇与聚ε-己内酯嵌段质量比为1∶75的共聚物和1∶5的共聚物溶解在二氯甲烷中为油相,混合并超声形成W/O乳液后静电纺丝得纤维毡。扫描电子显微镜观察纤维毡形态并用图形软件进行纤维直径分布分析,广角X-射线衍射扫描观察纤维表面结晶状态,差示扫描量热评价药物在高分子材料中的结合状态,高效液相色谱测定药物体外释放结果。结果随着油相中聚乙二醇与聚酯嵌段质量比为1∶75和1∶5两种共聚物的含量比例由高到低,纤维形状由直径较均匀的纤维向直径不均匀的纤维转变,最终形成连接珠形态,平均直径和最大直径逐渐增高。所得纤维表面光滑无结晶态物质析出,X-射线衍射没有发现L-肉毒碱特征峰出现。差示扫描量热结果显示L-肉毒碱的加入使纤维的玻璃化温度降低。随着平均直径的增高,L-肉毒碱释放速率逐渐减慢。结论采用较高相对分子质量聚酯作为成纤材料,相对分子质量较低且聚乙二醇嵌段比例较高的嵌段聚酯为乳化剂,可制得载L-肉毒碱纤维毡作为局部药物控制释放系统。  相似文献   
65.
Background  Peripheral nerve regeneration across large gaps is clinically challenging. Scaffold design plays a pivotal role in nerve tissue engineering. Recently, nanofibrous scaffolds have proven a suitable environment for cell attachment and proliferation due to similarities of their physical properties to natural extracellular matrix. Poly(propylene carbonate) (PPC) nanofibrous scaffolds have been investigated for vascular tissue engineering. However, no reports exist of PPC nanofibrous scaffolds for nerve tissue engineering. This study aimed to evaluate the potential role of aligned and random PPC nanofibrous scaffolds as substrates for peripheral nerve tissue and cells in nerve tissue engineering.
Methods  Aligned and random PPC nanofibrous scaffolds were fabricated by electrospinning and their chemical characterization were carried out using scanning electron microscopy (SEM). Dorsal root ganglia (DRG) from Sprague-Dawley rats were cultured on the nanofibrous substrates for 7 days. Neurite outgrowth and Schwann-cell migration from DRG were observed and quantified using immunocytochemistry and SEM. Schwann cells derived from rat sciatic nerves were cultured in electrospun PPC scaffold-extract fluid for 24, 48, 72 hours and 7 days. The viability of Schwann cells was evaluated by 3-[4,5-dimethyl(thiazol-2-yl)-2,5-diphenyl] tetrazolium bromide (MTT) assay.
Results  The diameter of aligned and random fibers ranged between 800 nm and 1200 nm, and the thickness of the films was approximately 10–20 μm. Quantification of aligned fiber films revealed approximately 90% alignment of all fibers along the longitudinal axis. However, with random fiber films, the alignment of fibers was random through all angle bins. Rat DRG explants were grown on PPC nanofiber films for up to 1 week. On the aligned fiber films, the majority of neurite outgrowth and Schwann cell migration from the DRG extended unidirectionally, parallel to the aligned fibers. However, on the random fiber films, neurite outgrowth and Schwann cell migration were randomly distributed. A comparison of cumulative neurite lengths from cultured DRGs indicated that neurites grew faster on aligned PPC films ((2537.6±987.3) μm) than randomly-distributed fibers ((493.5±50.6) μm). The average distance of Schwann cell migration on aligned PPC nanofibrous films ((2803.5±943.6) μm) were significantly greater than those on random fibers ((625.3±47.8) μm). The viability of Schwann cells cultured in aligned PPC scaffold extract fluid was not significantly different from that in the plain DMEM/F12 medium at all time points after seeding.
Conclusions  The aligned PPC nanofibrous film, but not the randomly-oriented fibers, significantly enhanced peripheral nerve regeneration in vitro, indicating the substantial role of topographical cues in stimulating endogenous nerve repair mechanisms. Aligned PPC nanofibrous scaffolds may be a promising biomaterial for nerve regeneration.
  相似文献   
66.
Nanofibrous poly(L-lactide-co-D,L-lactide) (coPLA) or coPLA/poly(ethylene glycol) implants loaded with plant polyphenolic compound gossypol (GOS) with anti-tumor activity were fabricated by electrospinning. Implants containing quaternized chitosan (QCh) were prepared by coating of the obtained fibrous materials with a thin film of cross-linked QCh. The morphology of the implants and chemical composition of the implant surface were studied by means of scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). In vitro cytotoxicity assay showed that GOS-loaded nanofibrous implants, both non-coated and QCh-coated displayed about two-fold higher inhibitory activity against Graffi tumor cells than that of free GOS at the 72nd h of incubation. As evidenced by the performed fluorescence microscopy analyses and SEM observations, the anti-tumor activity of the fibrous implants was mainly due to induction of apoptosis. The experiments in which the implants containing both QCh and GOS were placed locally into the tumor site after the tumor extirpation showed an increase in the survival rate and a lower rate of recurrence in the operative field and of metastases in regional lymph nodes. In this case, 40% of hamsters were alive on the 45th day of implantation and they did not show any clinical sign of recurrence in the operative field and metastases in the regional lymph nodes.  相似文献   
67.
In tissue engineering, it is common to mix drugs that can control proliferation and differentiation of cells into polymeric solutions as part of composite to get bioactive scaffolds. However, direct incorporation of drugs might potentially result in undesired burst release. To overcome this problem, here we developed electrospun multilayer drug loaded poly-l-lactic acid/pluronic P123 (PLLA–P123) composite scaffolds. The drug was loaded into the middle layer. The surface, the mechanical and physiochemical properties of the scaffolds were evaluated. The drug release profiles were monitored. Finally, the osteogenic proliferation and differentiation potential were determined. The scaffolds fabricated here have appropriate surface properties, but with different mechanical strength and osteogenic proliferation and differentiation. Multi-layer scaffolds where the drug was in the middle layer and PLLA-plasma and PLLA–P123 with cover layer showed the best osteogenic proliferation and differentiation than the other groups of scaffolds. The drug release profiles of the scaffolds were completely different: single layer scaffolds showed burst release within the first day, while multilayer scaffolds showed controlled release. Therefore, the multilayer drug loaded scaffolds prepared have dual benefits can provide both better osteogenesis and controlled release of drugs and bioactive molecules at the implant site.  相似文献   
68.
In this study, thermally crosslinked hydrolyzed polymers of intrinsic microporosity (HPIM)/polybenzoxazine electrospun nanofibrous membranes (NFMs) are successfully produced. The nanofibers having 800 ± 260 to 670 ± 150 nm average fiber diameters from HPIM and blends of HPIM/ benzoxazine (BA‐a) ranging from HPIM:(BA‐a) weight ratio of 9:1 to 2:1 w/w are produced by electrospinning. Self‐standing HPIM/(BA‐a) NFMs are thermally step‐wise cured resulting in crosslinked HPIM/Poly(BA‐a) NFMs. Structural characterization of as‐electrospun HPIM/(BA‐a) and crosslinked HPIM/Poly(BA‐a) NFM is conducted by FT‐IR spectroscopy to trace the ring opening and crosslinking reactions. Elemental analysis and XPS studies show an increase in carbon content and reduction in nitrogen content due to the crosslinking reaction. Decomposition temperature (T d) of HPIM NFM increases from 218 to 270 °C with the crosslinking based on the DSC. DMA analysis shows that the mechanical strength of the NFMs has increased significantly with crosslinking. Young's moduli of HPIM NFM is increased from 16 ± 7 to 67 ± 1 MPa for crosslinked HPIM/Poly(BA‐a)%33 NFM. Similarly, higher storage modulus is observed for HPIM/Poly(BA‐a) NFMs compared to HPIM NFM. The crosslinked HPIM/Poly(BA‐a) NFMs keep their fibrous morphology after solvent treatment in dimethylformamide revealing their structural stability compared to pristine HPIM NFM.  相似文献   
69.
目的 从体内外水平评价一种负载了成骨生长肽(OGP)的聚乳酸-羟基乙酸共聚物(PLGA)纤维支架作为新型骨组织工程支架的可行性。方法 采用静电纺丝法制备支架,一共有4组。对照组:纯PLGA支架(不含OGP的 PLGA支架);实验组:0.1%OGP@PLGA(电纺含有0.1%OGP的PLGA溶液制得的支架)、0.2%OGP@PLGA(电纺含有0.2%OGP的PLGA溶液制得的支架)、0.4%OGP@PLGA(电纺含有0.4%OGP的PLGA溶液制得的支架)。通过扫描电子显微镜(SEM)观察支架的微观结构,将材料浸泡在PBS中观察支架中OGP的释放规律,CCK-8和活死细胞染色实验评估支架的体外生物相容性,ALP活性检测和ARS染色评估支架上大鼠骨髓间充质干细胞(rBMSCs)的体外成骨分化水平,在雄性SD大鼠上制备直径为5 mm大小的颅骨缺损模型,将支架植入8周后利用Micro-CT检测、HE染色和Masson染色分析缺损处的骨修复情况。结果 SEM结果显示,支架具有类细胞外基质(ECM)的纤维结构,负载的OGP能持续从支架内缓释长达1月以上,将细胞与支架共培养4、7 d后,负载高浓度OGP(OGP浓度大于2%)的PLGA支架细胞增殖率显著高于纯PLGA支架(P<0.01),ALP活性检测结果显示第14天时,在负载0.4%含量OGP的PLGA支架上rBMSCs的ALP活性最高(P<0.01)。ARS染色结果显示,细胞14 后在负载0.4% OGP的PLGA支架上分泌的钙化结节最多。Micro-CT扫描结果发现,负载0.4% OGP的PLGA组材料周围较其他两组有更多的新骨生成(P<0.01)。此外组织学HE和Masson染色结果和以上结果类似。结论 负载OGP的静电纺丝PLGA支架有效模拟了体内细胞外基质,具有良好的生物相容性及促成骨分化能力,是一种具有潜在应用价值的新型骨组织工程支架。  相似文献   
70.
Long-term antibacterial medical dressings can prevent infection as skin wounds heal. In this study, we used the hydrophobic antibacterial drug amoxicillin as a model to prepare drug-loaded nanomicelles using a film dispersion–hydration method, and drug-loaded nanomicelles were coaxially electrospun into nanofiber to create a novel nanomicelle-in-nanofiber (NM-in-NF) drug delivery system. Scanning electron microscopy and transmission electron microscopy were used to characterize the morphology of nanomicelles and nanofibers. Thermal property of as-prepared samples was tested using differential scanning calorimetry. The drug release behavior, cytotoxicity, and antibacterial properties of NM-in-NFs were examined in vitro to evaluate the system’s potential to be used in the treatment of skin wounds. Experimental results indicated that the novel NM-in-NF system had dual controlled release effect, which greatly reduced burst release and prolonged effective drug duration. Moreover, NM-in-NFs was also found to be safe and non-toxic, with a broad-spectrum antibacterial activity. It thus could potentially be used in long-term antibacterial medical dressings to treat skin wounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号