首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   337篇
  免费   58篇
  国内免费   16篇
基础医学   114篇
口腔科学   21篇
临床医学   61篇
内科学   75篇
皮肤病学   1篇
神经病学   8篇
特种医学   3篇
外科学   15篇
综合类   48篇
眼科学   2篇
药学   58篇
中国医学   4篇
肿瘤学   1篇
  2023年   5篇
  2022年   24篇
  2021年   40篇
  2020年   13篇
  2019年   19篇
  2018年   29篇
  2017年   17篇
  2016年   26篇
  2015年   23篇
  2014年   45篇
  2013年   59篇
  2012年   17篇
  2011年   25篇
  2010年   8篇
  2009年   18篇
  2008年   10篇
  2007年   14篇
  2006年   5篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
  1998年   2篇
  1997年   4篇
  1996年   1篇
  1993年   1篇
排序方式: 共有411条查询结果,搜索用时 15 毫秒
31.
Fabrication of nanofibrous biomaterials composed of natural and synthetic materials that incorporated with antibiotic and growth factors with controlled release manner is an attractive topic in wound healing. The purpose of this study was to prepare optimal composite of materials as biomimetic nanofibrous mats for application in wound healing. The mat was prepared of polycaprolactone (PCL) in the bottom, chitosan/poly ethylene oxide (Cs/PEO) in the middle, and PCL/collagen (PCL/Coll) in the top layer. A panel of standard characterization tests of nanofibrous mat was performed and its compatibilities in strength and integration were confirmed. Middle layer was loaded with epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF), and silver sulfadiazine (SSD) was incorporated in the bottom layer as an anti‐infection factor. Then, on the dorsum of rats, a 400‐mm2 wound was created and surrounded by a silicone ring to control the usual tissue contractions. Nanofibrous mats with or without growth factors were applied as wound dressings and at day 14, the healing process was evaluated. At day 14, the treated group by designed mat showed faster epithelialization and angiogenesis. Silicone ring in the test group was desirable in wound closure compared to the control group. Reformation of skin tissue was manifested in a shorter time. This composite nanofibrous mat could be introduced as a dynamic and effective candidate for wound dressing.  相似文献   
32.
The purpose of this study was to investigate the structural integrity, bioactivity and release patterns of lysozyme, as a model protein, encapsulated within the core-shell structured ultrafine fibers prepared by emulsion electrospinning. Electron microscopy and laser confocal scanning microscopy images demonstrated that the fibrous mats were very porous with integrally core-shell structured, bead-free, and randomly arrayed fibers. This structural property can pronouncedly alleviate the initial burst release and improve the sustainability of ultrafine fiber-based releasing devices. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and size exclusion chromatography were used to assess the primary structure of lysozyme, indicating that the ultra-sonication and electrospinning did not cause any remarkable denaturation of protein, while the core-shell structured fibers protected the structural integrity of encapsulated protein during incubation in the medium. Fourier transform infrared analyses showed that the electrospinning process had much less effect on the secondary structure of protein than ultra-sonication. The bioactivity assay indicated around 16% of specific activity loss during the emulsification procedure, and the protective effect of the shell materials on the activity of encapsulated protein. In vitro degradation showed that the protein entrapment led to more significant mass loss and higher molecular weight reduction.  相似文献   
33.
Introduction: During the last decade, the use of electrospinning for the fabrication of nanofibrous materials loaded with antibacterial agents or anticancer drugs for biomedical applications such as dressing materials for wound treatment and for local cancer treatment has evoked considerable interest. Different drugs can be easily incorporated in electrospun materials and their release profile can be controlled through changes in the fibers morphology, porosity and composition. The large specific surface area of the electrospun materials, the possibility for gradual release and site-specific local delivery of the active compounds lead to cytotoxicity decrease and enhancement of the therapeutic effect of the drugs.

Areas covered: The most recent studies on drug-loaded electrospun mats as materials for wound dressing or local cancer treatment are briefly summarized.

Expert opinion: The possibility for local drug delivery in cancer therapy using electrospun materials allows avoiding the oral or systemic drug application, thus leading to decrease in some deleterious side effects. The recent achievements in the comprehension of the electrospinning, in control over the surface chemical composition of the electrospun materials, and in diversifying the applied approaches and techniques, propound larger prospects for creating new materials for wound dressing and local cancer treatment.  相似文献   
34.
静电纺丝技术(简称"电纺")是一种在高压电场作用下形成超细纤维的聚合物加工技术。通过控制电纺过程的各种参数可以制得性能不同的纳米纤维支架。本文主要介绍了电纺纳米纤维支架在皮肤、血管、骨、肌腱、神经等组织工程领域中的应用研究进展。  相似文献   
35.
Electrospinning has recently gained widespread attention as a process capable of producing nanoscale fibres that mimic native extracellular matrix. In this study, we compared the osteogenic differentiation behaviour of human adipose stem cells (ASCs) on a 3D nanofibre matrix of type I rat tail collagen (RTC) and a 2D RTC collagen-coated substrate, using a novel serum-free osteogenic medium. The serum-free medium significantly enhanced the numbers of proliferating cells in culture, compared to ASCs in traditional basal medium containing 10% animal serum, highlighting a potential clinical role for in vitro stem cell expansion. Osteogenic differentiation behaviour was assessed at days 7, 14 and 21 using quantitative real-time RT-PCR analysis of the osteogenic genes collagen I (Coll I), alkaline phosphatase (ALP), osteopontin (OP), osteonectin (ON), osteocalcin (OC) and core-binding factor-alpha (cbfa1). All genes were upregulated (>one-fold) in ASCs cultured on nanofibre scaffolds over 2D collagen coatings by day 21. Synthesis of mineralized extracellular matrix on the scaffolds was assessed on day 21 with Alizarin red staining. These studies demonstrate that 3D nanoscale morphology plays a critical role in regulating cell fate processes and in vitro osteogenic differentiation of ASCs under serum-free conditions.  相似文献   
36.
37.
38.
39.
Abstract

Conducting polymer-based scaffolds receive biological and electrical signals from the extracellular matrix (ECM) or peripheral cells, thereby promoting cell growth and differentiation. Chitin, a natural polymer, is widely used as a scaffold because it is biocompatible, biodegradable, and nontoxic. In this study, we used an electrospinning technique to fabricate conductive scaffolds from aligned chitin/polyaniline (Chi/PANi) nanofibers for the directional guidance of cells. Pure chitin and random and aligned Chi/PANi nanofiber scaffolds were characterized using field emission scanning electron microscope (FE-SEM) and by assessing wettability, mechanical properties, and electrical conductivity. The diameters of aligned Chi/PANi nanofibers were confirmed to be smaller than those of pure chitin and random nanofibers owing to electrostatic forces and stretching produced by rotational forces of the drum collector. The electrical conductivity of aligned Chi/PANi nanofiber scaffolds was ~91% higher than that of random nanofibers. We also studied the viability of human dermal fibroblasts (HDFs) cultured on Chi/PANi nanofiber scaffolds in vitro using a CCK-8 assay, and found that cell viability on the aligned Chi/PANi nanofiber scaffolds was ~2.1-fold higher than that on random Chi/PANi nanofiber scaffolds after 7 days of culture. Moreover, cells on aligned nanofiber scaffolds spread in the direction of the aligned nanofibers (bipolar), whereas cells on the random nanofibers showed no spreading (6 h of culture) or multipolar patterns (7 days of culture). These results suggest that aligned Chi/PANi nanofiber scaffolds with conductivity exert effects that could improve survival and proliferation of cells with directionality.  相似文献   
40.
Nanofibrous poly(L-lactide-co-D,L-lactide) (coPLA) or coPLA/poly(ethylene glycol) implants loaded with plant polyphenolic compound gossypol (GOS) with anti-tumor activity were fabricated by electrospinning. Implants containing quaternized chitosan (QCh) were prepared by coating of the obtained fibrous materials with a thin film of cross-linked QCh. The morphology of the implants and chemical composition of the implant surface were studied by means of scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). In vitro cytotoxicity assay showed that GOS-loaded nanofibrous implants, both non-coated and QCh-coated displayed about two-fold higher inhibitory activity against Graffi tumor cells than that of free GOS at the 72nd h of incubation. As evidenced by the performed fluorescence microscopy analyses and SEM observations, the anti-tumor activity of the fibrous implants was mainly due to induction of apoptosis. The experiments in which the implants containing both QCh and GOS were placed locally into the tumor site after the tumor extirpation showed an increase in the survival rate and a lower rate of recurrence in the operative field and of metastases in regional lymph nodes. In this case, 40% of hamsters were alive on the 45th day of implantation and they did not show any clinical sign of recurrence in the operative field and metastases in the regional lymph nodes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号