首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   2篇
  国内免费   1篇
基础医学   18篇
口腔科学   1篇
临床医学   11篇
内科学   21篇
神经病学   6篇
外科学   2篇
药学   2篇
肿瘤学   1篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2016年   1篇
  2014年   4篇
  2013年   4篇
  2012年   4篇
  2011年   5篇
  2010年   5篇
  2009年   1篇
  2008年   11篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1998年   1篇
  1992年   1篇
排序方式: 共有62条查询结果,搜索用时 15 毫秒
51.
Chromosome structure and function are influenced by transposable elements, which are mobile DNA segments that can move from place to place. hAT elements are a superfamily of DNA cut and paste elements that move by excision and integration. We have characterized two hAT elements, TcBuster and Space Invaders (SPIN), that are members of a recently described subfamily of hAT elements called Buster elements. We show that TcBuster, from the red flour beetle Tribolium castaneum, is highly active in human cells. SPIN elements are currently inactive elements that were recently highly active in multiple vertebrate genomes, and the high level of sequence similarity across widely diverged species and patchy phylogenetic distribution suggest that they may have moved between genomes by horizontal transfer. We have generated an intact version of this element, SPINON, which is highly active in human cells. In vitro analysis of TcBuster and SPINON shows that no proteins other than transposase are essential for recombination, a property that may contribute to the ability of SPIN to successfully invade multiple organisms. We also analyze the target site preferences of de novo insertions in the human genome of TcBuster and SPINON and compare them with the preferences of Sleeping Beauty and piggyBac, showing that each superfamily has a distinctive pattern of insertion. The high-frequency transposition of both TcBuster and SPINON suggests that these transposon systems offer powerful tools for genome engineering. Finally, we describe a Saccharomyces cerevisiae assay for TcBuster that will provide a means for isolation of hyperactive and other interesting classes of transposase mutants.  相似文献   
52.
Harnessing toxic proteins to destroy selective cells in an embryo is an attractive method for exploring details of cell fate and cell-cell interdependency. However, no existing "suicide gene" system has proved suitable for aquatic vertebrates. We use the M2(H37A) toxic ion channel of the influenza-A virus to induce cell-ablations in Xenopus laevis. M2(H37A) RNA injected into blastomeres of early stage embryos causes death of their progeny by late-blastula stages. Moreover, M2(H37A) toxicity can be controlled using the M2 inhibitor rimantadine. We have tested the ablation system using transgenesis to target M2(H37A) expression to selected cells in the embryo. Using the myocardial MLC2 promoter, M2(H37A)-mediated cell death causes dramatic loss of cardiac structure and function by stage 39. With the LURP1 promoter, we induce cell-ablations of macrophages. These experiments demonstrate the effectiveness of M2(H37A)-ablation in Xenopus and its utility in monitoring the progression of developmental abnormalities during targeted cell death experiments.  相似文献   
53.
54.
Background : A challenge in age research is the absence of short‐lived vertebrate model organisms. The turquoise killifish Nothobranchius furzeri has an exceptionally short lifespan of 4–10 months depending on the strain. Thus, it possesses the shortest known maximum lifespan of a vertebrate species that can be bred in captivity. Results : Here we show the successful introduction of DNA and RNA molecules into the one‐cell embryo of N. furzeri. For this purpose, we adapted existing microinjection protocols to inject through the remarkably thick and robust chorion of N. furzeri's eggs. The injected DNA transgene was integrated into the genome and transmitted to subsequent generations as indicated by the expression of the fluorophore enhanced green fluorescent protein (EGFP). Furthermore, we could confirm a special phase during embryonic development in which embryogenesis occurs within a re‐aggregated mass of previously dispersed cells as it has been described for other related cyprinodont fish species. Conclusions : The transgenesis protocol described here provides a basis for a variety of genetic manipulations including overexpression of genes and determining their effects on lifespan and longevity. The feasibility to perform transgenesis is an important step to establish N. furzeri as a new model in age research. Developmental Dynamics 241:1133–1141, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
55.
After colonization of the gonad, mouse female germ cells enter into the prophase of the first meiotic division as a mid-gestational hallmark of gender. Perinatally, oocytes interact with granulosa cells to form primordial follicles which, with cyclic periodicity, enter into a 3-week growth phase that culminates in meiotic maturation and ovulation. Successful fertilization in the oviduct results in the onset of embryogenesis. Genes expressed in oocytes encode maternal factors that control many of these developmental processes. The establishment of mouse models in which specific genes have been disrupted offers robust insights into molecular mechanisms that control oogenesis, folliculogenesis, fertilization and early embryogenesis. Although relatively few developmental circuits have been characterized in genetic detail, the ongoing revolution in mouse genetics holds great promise. These model systems provide novel information into the molecular basis of the pathways required for oocyte-specific processes as well as for interactions with the temporally changing environment of female germ cells. The similarities between the mouse and human genomes provide assurance that this knowledge will rapidly translate into a better understanding of human reproduction.  相似文献   
56.
57.
The olive fruit fly (olive fly) Bactrocera oleae (Dacus), recently introduced in North America, is the most destructive pest of olives worldwide. The lack of an efficient gene transfer technology for olive fly has hampered molecular analysis, as well as development of genetic techniques for its control. We have developed a Minos-based transposon vector carrying a self-activating cassette which overexpresses the enhanced green fluorescent protein (EGFP). Efficient transposase-mediated integration of one to multiple copies of this vector was achieved in the germ line of B. oleae by coinjecting the vector along with in vitro synthesized Minos transposase mRNA into preblastoderm embryos. The self-activating gene construct combined with transposase mRNA present a system with potential for transgenesis of very diverse species.  相似文献   
58.
Germline transformation using a piggyBac-derived vector is feasible in the sawfly, Athalia rosae. A previously generated transgenic line carrying green fluorescence protein (GFP) genes as reporters was successfully maintained and preserved without consecutive rearing. Sperm taken from males that were frozen directly in liquid nitrogen and stored at -80 degrees C for a year were microinjected into mature unfertilized eggs dissected from female ovaries. A fraction of the sperm-injected eggs was fertilized and developed into diploid females, and all of them expressed GFP. Haploid male progeny from these females segregated into GFP-positive and GFP-negative individuals in a ratio of 1:1 indicating heterozygosity of the parental females. The GFP genes were stably inherited staying at the location where they were originally integrated.  相似文献   
59.
BACKGROUND: The introduction of transgenic technology has made it possible to study the steps of carcinogenesis and directly establish the link between viral subgenomic fragments and specific types of cancer. Research directed at hepatitis B virus (HBV)-related carcinogenesis has benefited from this technology. We present a detailed pathological evaluation of the sequential steps of hepatocarcinogenesis in a hepatitis B 'x' (HBx) transgenic mouse model. In this model, the transgene incorporates the region encoding amino acids 58-154 of the HBV X protein and the murine c-myc gene. This model demonstrated changes in the liver from birth with foci of multicentric dysplasia evolving into nodules and overt hepatocellular carcinoma between 20 and 28 weeks. METHODS AND RESULTS: The hepatocytes were mitotically active and showed increased proliferative capacity soon after birth, with exponential increase thereafter. This was accompanied by a high rate of apoptosis, which later declined as the tumors developed. Other functional and immunophenotypic characteristics included a high c-myc expression in the neoplastic lesions, no alteration in p53 expression, and no alteration in the expression of hepatic enzymes except for diffuse expression of succinic dehydrogenase. CONCLUSION: The entire process illustrates the disturbances of cell growth and death because of the collaborative influence of HBx and c-myc genes that result in the development of hepatocellular carcinoma after a prolonged latent period.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号