The cortical distal nephron is committed to the fine regulationof electrolytes and water balance. Several investigations haveaddressed the molecular mechanisms implicated in this process.The paper by Belge et al. [1] demonstrates the emerging roleof parvalbumin (PV) on distal tubule NaCl reabsorption. PV isa divalent cation buffering protein, exclusively expressed inthe early distal convoluted tubule (DCT1). The authors showsolid data suggesting a functional relationship between PV andthe thiazide-sensitive Na+-Cl cotransporter (NCC), themain entry step for Na+ and Cl through the apical membraneat this nephron site. PV–/– mice exhibit a salt-losingphenotype characterized by increased diuresis, kaliuresis andhigh aldosterone levels, a phenotype very similar, althoughnot  相似文献   
[首页] « 上一页 [1] [2] [3] [4] [5] 6 [7] [8] [9] [10] [11] 下一页 » 末  页»
  首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   383篇
  免费   28篇
  国内免费   6篇
耳鼻咽喉   1篇
儿科学   2篇
基础医学   100篇
临床医学   2篇
内科学   16篇
神经病学   274篇
特种医学   1篇
外科学   3篇
综合类   5篇
预防医学   5篇
眼科学   2篇
药学   6篇
  2022年   3篇
  2021年   13篇
  2020年   11篇
  2019年   7篇
  2018年   12篇
  2017年   8篇
  2016年   9篇
  2015年   7篇
  2014年   19篇
  2013年   10篇
  2012年   17篇
  2011年   23篇
  2010年   26篇
  2009年   8篇
  2008年   25篇
  2007年   19篇
  2006年   17篇
  2005年   20篇
  2004年   19篇
  2003年   10篇
  2002年   18篇
  2001年   12篇
  2000年   12篇
  1999年   7篇
  1998年   12篇
  1997年   19篇
  1996年   12篇
  1995年   7篇
  1994年   11篇
  1993年   4篇
  1992年   7篇
  1991年   4篇
  1990年   6篇
  1989年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有417条查询结果,搜索用时 15 毫秒
51.
52.
53.
The mechanism of serotoninergic transmission in the neo- and archicortex of mammals kis complex, including both synaptic and nonsynaptic components, direct actions on principal cells, and indirect effects mediated by GABAergic interneurons. Here we studied the termination pattern and synaptic organization of the serotoninergic afferents in the cerebral cortex of the lizard, Podarcis hispanica, which is considered to correspond in part to the mammalian hippocampal formation, with the aim of unraveling basic, phylogenetically preserved rules in the connectivity of this pathway. We demonstrate that serotoninergic afferents, visualized by immunostaining for serotonin itself, establish multiple synaptic contacts with different subpopulations of nonprincipal cells containing parvalbumin, neuropeptide Y, and opioid peptides. The former two subpopulations contain GABA, whereas the opioid- immunoreactive neurons are most likely GABA-negative cells. Evidence is provided at the electron microscopic level that serotonin-immunoreactive varicosities establish conventional asymmetric synaptic contacts with their nonprincipal targets, but nonsynaptic varicosities also exist. We conclude that, similarly to mammals, a selective synaptic innervation of nonprincipal, possibly inhibitory, neurons is among the mechanisms of serotoninergic modulation of cerebral cortical activity in the lizard. © 1994 Wiley-Liss, Inc.  相似文献   
54.
We have studied the sequential change of parvalbumin immunocytochemistry and its correlation with intracellular Ca242+ deposition in an animal model of muscle fiber necrosis and regeneration induced by intramuscular injection of metoclopramide. Twenty-four hours after the drug's injection, extensive muscle fiber necrosis, together with dramatic loss of parvalbumin immunoreactivity and intracellular Ca2+ deposition, was observed. Muscle fiber regeneration began on day 4 after the injection and was complete by the end of the third week. Parvalbumin was not detected in the regenerating fibers, but gradually emerged during the second week as muscle fibers increased in size. It can be suggested that loss of parvalbumin in necrotic fibers is secondary to the loss in integrity of the sarcolemma. Alternatively, loss of parvalbumin in degenerating fibers may impair calcium buffering and act as a contributory factor in the necrotic process. The progressive appearance of parvalbumin immunoreactivity in regenerating fibers parallels that found in normal myogenesis. © 1994 John & Sons, Inc.  相似文献   
55.
The thalamus is known to receive single-whisker ‘lemniscal’ inputs from the trigeminal nucleus principalis (Prv) and multiwhisker ‘paralemniscal’ inputs from the spinal trigeminal nucleus (Spv), yet the responses of cells in the thalamic ventroposteromedial nucleus (VPM) are most similar to and contingent upon inputs from PrV. This may reflect a differential termination pattern, density and/or synaptic organization of PrV and SpV projections. This hypothesis was tested in adult rats using anterograde double-labelling with fluorescent dextrans, horseradish peroxidase (HRP) and choleragenoid, referenced against parvalbumin and calbindin immunoreactivity. The results indicated that Prv's most robust thalamic projection is to the whisker-related barreloids of VPM. The SpV had robust projections to non-barreloid thalamic regions, including the VPM ‘shell’ encapsulating the barreloid area, a caudal and ventral region of VPM that lacks barreloids and PrV inputs, the posterior thalamic nucleus, nucleus submedius and zona incerta. Within the barreloid portion of VPM, SpV projections were sparse relative to those from PrV, and most terminal labelling occurred in the peripheral fringes of whisker-related patches and in inter-barreloid septae. Thus, PrV and SpV have largely complementary projection foci in the thalamus. Intra-axonal staining of a small sample of trigeminothalamic axons with whisker or guard hair receptive fields revealed highly localized and somatotopic terminal aggregates in VPM that spanned areas no larger than that of a single barreloid. In the electron microscopic component of this study, HRP transport to the barreloid region of VPM from left SpV and right PrV in the same cases revealed PrV terminals contacting dendrites with a broad range of minor axis diameters (mean ± SD: 1. 51 ± 0. 10 μm). SpV terminals were indistinguishable from those of PrV, but they had a disproportionate number of contacts on narrow dendrites (1. 27 ± 0. 07 μm, P 0. 01). PrV endings were also more likely to contact VPM somata (11. 0 ± 4. 2% of all labelled terminals) than those from SpV (3. 0 ± 1. O%, P 0. 01). Insofar as primary dendrites are thicker than distal dendrites in VPM, these data suggest a differential distribution of PrV and SpV inputs onto VPM cells that may account for their relative efficacies in dictating the responses of VPM cells to whisker stimulation. Multiwhisker receptive fields in VPM may also reflect direct transmission of convergent inputs from PrV.  相似文献   
56.
Material for the study came from one 126 day-old rhesus monkey fetus and two 3 day-old neonates. The immunocytochemical detection of somatostatin, neurotensin (NT), parvalbumin, calbindin D-28K, DARPP-32 as well as tyrosine hydroxylase (TH), dopamine-β-hydroxylase and serotonin (5-HT), was carried out on serial cryostat sections of the entorhinal cortex. The authors reported in a previous paper the precocious differentiation of the entorhinal cortex in rhesus monkey fetuses and featured the conspicuous expression of calbindin D-28K, somatostatin, neurotensin, and the monoaminergic innervation during the first half of gestation. The present study shows distinct temporal profiles of neurochemical development during the second half of gestation: the dense neuropeptidergic innervation remained a constant feature; the three aminergic systems gradually increased in density; parvalbumin, unlike calbindin D-28K, was primarily expressed during the last quarter of gestation. Three othe prominent features of the last quarter of gestation are illustrated: the refinement of the modular neurochemical organization of the lamina principalis externa, the delayed chemoanatomical development of the rhinal sulcus area, and the establishment of a distinct rostrocaudal pattern of neurochemical distribution. In correspondence with the cluster-like organization of the lamina principalis externa, the authors observed in the olfactory, rostral, and intermediate fields of the neonate monkey entorhinal cortex, a particular subset of pyramidal-shaped neurons: located in layer III, they were characterized by fasciculated apical dendrites ascending between the cellular islands of the discontinuous layer II and the coexpression of calbindin D-28K and DARPP-32. Besides, most of the other chemical systems displayed a distinct, area-specific, patcy distribution, except for the homogeneously distributed noradrenergic innervation. In the olfactory and rostral fields, TH positive dopaminergic fibers accumulated on the neuronal islands of layers II-III, and parvalbumin labeled fibers on those of layer III, whereas patches of 5-HT and NT-like reactive terminals were segregated between the cellular islands, overlapping the DARPP-32/calbindin D-28 K labeled dendritic bundles. At the opposite, in the intermediate field, 5-HT positive terminals overlapped the cellular islands of layer II and thin fascicles of dopaminergic fibers ran in the inter island spaces. The somatostatin-LIR innervation was apparently too dense to reveal a patchy distribution that existed at earlier developmental stages. In the cadual field, the patchy pattern was replaced by a predominant bilaminar type of distribution of NT, 5-HT, and TH-like positive afferents. Numerous parvalbumin positive multipolar neurons and basket cells participated to a dense parvalbumin labeled network, extending through layers II-V, whose partial extrinsic origin is open to discussion. The rhinal sulcus, still reduced to a small dimple at E126, appeared fully developed at birth. The fundus of the sulcus was marked by a sharp decrease of the neurotensin and parvalbumin-LIR innervations whereas the density of somatostatin and aminergic terminals increased markedly in the perirhinal cortex. Although a transitory overexpression of some of the neurochemical systems under study might occur during development, their modular organization in the lamina principalis externa of the neonate represents a basic feature of the entorhinal cortex and adds further support to the evidence that neurons of layers II-III that project to different parts of the hippocampal formation, belong to distinct heterogeneous systems. This extensive prenatal development is in line with recent data emphasizing the critical role of limbic structures in early recognition memory in infant monkeys. The question arises, however, in view of the delayed development of the rhinal sulcus area, as to whether the preferential connections of the lateral entohinal and perirhinal cortex with regions of polymodal sensory convergence such as the prefrontal cortex and superior temporal gyrus might be established later than the connections of the rest of the entorhinal cortex.  相似文献   
57.
Background: Multiple studies on schizophrenia have suggested a dysfunction of γ-aminobutyric acid (GABA) transmission in the prefrontal cortex (PFC) and some vulnerability of the central nervous system to the aging process. Since one of the calcium-binding proteins, parvalbumin (PV) is a useful marker for a subpopulation of GABAergic local circuit neurons, we determined the PV gene expression in the PFC in schizophrenic brains to study a possible involvement of GABAergic system and its vulnerability, if any, to the aging process.

Methods:


Methods: We attempted a detailed in situ hybridization to determine the PV gene expression throughout the three PFC subregions (Brodmann areas; BAs 9, 10, and 11) from six elderly patients with schizophrenia and five age-matched normal individuals.

Results:


Results: The regional levels of PV messenger RNA (mRNA) were significantly decreased in BAs 9 and 10 of schizophrenics compared with controls. The cellular levels were significantly decreased in layers III, IV, and V in BAs 9 and 10 of schizophrenics. However, in BA 11 of schizophrenics, the cellular level was significantly decreased in layer in alone. There were significant reverse correlations between the PV mRNA levels in those areas and the age at death in the schizophrenic group, but not in the controls.

Conclusion:


Conclusion: The present results not only provide further evidence of a disturbance in GABA transmission in the PFC of schizophrenics, but also suggest that such dysfunction may be region-specific and vulnerable to the aging process.  相似文献   
58.
Mounting evidence has demonstrated that a specialized extracellular matrix exists in the mammalian brain and that this glycoprotein‐rich matrix contributes to many aspects of brain development and function. The most prominent supramolecular assemblies of these extracellular matrix glycoproteins are perineuronal nets, specialized lattice‐like structures that surround the cell bodies and proximal neurites of select classes of interneurons. Perineuronal nets are composed of lecticans, a family of chondroitin sulfate proteoglycans that includes aggrecan, brevican, neurocan, and versican. These lattice‐like structures emerge late in postnatal brain development, coinciding with the ending of critical periods of brain development. Despite our knowledge of the presence of lecticans in perineuronal nets and their importance in regulating synaptic plasticity, we know little about the development or distribution of the extracellular proteases that are responsible for their cleavage and turnover. A subset of a large family of extracellular proteases (called a disintegrin and metalloproteinase with thrombospondin motifs [ADAMTS]) is responsible for endogenously cleaving lecticans. We therefore explored the expression pattern of two aggrecan‐degrading ADAMTS family members, ADAMTS15 and ADAMTS4, in the hippocampus and neocortex. Here, we show that both lectican‐degrading metalloproteases are present in these brain regions and that each exhibits a distinct temporal and spatial expression pattern. Adamts15 mRNA is expressed exclusively by parvalbumin‐expressing interneurons during synaptogenesis, whereas Adamts4 mRNA is exclusively generated by telencephalic oligodendrocytes during myelination. Thus, ADAMTS15 and ADAMTS4 not only exhibit unique cellular expression patterns but their developmental upregulation by these cell types coincides with critical aspects of neural development. J. Comp. Neurol. 523:629–648, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   
59.
In this report the normal dendritic organization and fine structure of identified septohippocampal projection neurons is described as a prerequisite for a time course analysis of retrograde changes in these neurons following axotomy (see Naumann et al., J. Comp. Neurol. 325:219-242, 1992). Septohippocampal projection neurons were retrogradely labeled by injection of the fluorescent tracer Fluoro-Gold into the hippocampus. Next, retrogradely labeled cells in Vibratome sections of the medial septum/diagonal band complex were intracellularly stained with the fluorescent dye Lucifer Yellow (LY). Photooxidation of LY resulted in a stable electron-dense reaction product, which allowed us to study these double-labeled neurons by electron microscopy. Another series of sections containing retrogradely labeled neurons were immunostained for choline acetyltransferase (ChAT) or parvalbumin (PARV). In this way the fine structure of two different chemically characterized subpopulations of septohippocampal neurons could be compared with that of the LY-injected neurons. Intracellular filling of retrogradely labeled neurons with LY stained the cell body and the entire dendritic arbor. Essentially, three classes of neurons could be distinguished, i.e., bipolar cells, multipolar neurons, and an intermediate group. All these neurons displayed smooth, often varicose dendrites lacking spines. Mainly located close to the midline, there was a group of cells with only very few if any LY-stained dendrites. In the electron microscope, the double-labeled neurons were easily identified by numerous electron-dense lysosomes associated with transported Fluoro-Gold and the diffuse reaction product resulting from photooxidation. They displayed fine-structural characteristics as previously described for cholinergic neurons. In fact, our fine-structural analysis of ChAT-positive Fluoro-Gold-labeled neurons, but also of back-filled PARV-positive cells, gave very similar results. All these neurons had infolded nuclei, abundant cytoplasmic organelles, and a few axosomatic synapses. Thus, a plain electron microscopic study does not allow one to distinguish between subpopulations of septohippocampal projection neurons.  相似文献   
60.
   Summary of key findings
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号