首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   592篇
  免费   42篇
  国内免费   16篇
耳鼻咽喉   2篇
儿科学   16篇
妇产科学   1篇
基础医学   293篇
口腔科学   36篇
临床医学   11篇
内科学   111篇
皮肤病学   13篇
神经病学   53篇
特种医学   5篇
外科学   42篇
综合类   30篇
预防医学   2篇
眼科学   5篇
药学   13篇
中国医学   7篇
肿瘤学   10篇
  2024年   2篇
  2023年   3篇
  2022年   16篇
  2021年   12篇
  2020年   11篇
  2019年   20篇
  2018年   12篇
  2017年   5篇
  2016年   14篇
  2015年   28篇
  2014年   23篇
  2013年   39篇
  2012年   31篇
  2011年   31篇
  2010年   38篇
  2009年   35篇
  2008年   29篇
  2007年   32篇
  2006年   12篇
  2005年   23篇
  2004年   17篇
  2003年   16篇
  2002年   18篇
  2001年   20篇
  2000年   5篇
  1999年   14篇
  1998年   12篇
  1997年   21篇
  1996年   15篇
  1995年   6篇
  1994年   7篇
  1993年   6篇
  1992年   9篇
  1991年   4篇
  1990年   4篇
  1989年   5篇
  1988年   7篇
  1987年   6篇
  1986年   6篇
  1985年   12篇
  1984年   4篇
  1983年   2篇
  1981年   6篇
  1980年   5篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
排序方式: 共有650条查询结果,搜索用时 15 毫秒
21.
22.
The urine collecting duct system of the metanephric kidney develops by growth and branching morphogenesis of an unbranched progenitor tubule, the ureteric bud. Bud branching is mainly dichotomous and new branches form from existing branch tips, which are also the main sites of cell proliferation in the system. This behaviour, and the fact that some genes (e.g. Wnt11, Sox9) are expressed only in tips, suggests that tip cells are in a specific state of differentiation. In this report, we show that the lectin Dolichos biflorus agglutinin (DBA), hitherto regarded and used as a general marker of developing renal collecting ducts, binds to most of the duct system but does not bind to the very tips of growing branches. The zone avoided by DBA corresponds to the zone that expresses Wnt11, and the zone that shows enhanced cell proliferation. If branching of the ureteric bud of cultured embryonic kidneys is inhibited in organ culture, by blocking the kidney's endogenous glial cell-derived neurothrophic factor (GDNF)-based branch-promoting signals, the DBA-binding zone extends to the very end of the tip but is lost from there when branching is re-activated. Similarly, if excess GDNF is provided to growing kidneys, the DBA-free zone expands. DBA-staining status therefore appears to be a sensitive indicator of the morphogenetic activity of the collecting duct system.  相似文献   
23.
Formation of the palate, the organ that separates the oral cavity from the nasal cavity, is a developmental process characteristic to embryos of higher vertebrates. Failure in this process results in palatal cleft. During the final steps of palatogenesis, two palatal shelves outgrowing from the sides of the embryonic oronasal cavity elevate above the tongue, meet in the midline, and rapidly fuse together. Over the decades, multiple mechanisms have been proposed to explain how the superficial mucous membranes disappear from the contact line, thus allowing for normal midline mesenchymal confluence. A substantial body of experimental evidence exists for cell death, cell migration, epithelial-to-mesenchymal transdifferentiation (EMT), replacement through new tissue intercalation, and other mechanisms. However, the most recent use of gene recombination techniques in cell fate tracking disfavors the EMT concept, and suggests that apoptosis is the major fate of the midline cells during physiological palatal fusion. This article summarizes the benefits and drawbacks of histochemical and molecular tools used to determine the fates of cells within the palatal midline. Mechanisms of normal disintegration of the midline epithelial seam are reviewed together with pathologic processes that prevent this disintegration, thus causing cleft palate.  相似文献   
24.
A maternal low protein (LP) diet in rodents often results in low nephron endowment and renal pathophysiology in adult life, with outcomes often differing between male and female offspring. Precisely how a maternal LP diet results in low nephron endowment is unknown. We conducted morphological and molecular studies of branching morphogenesis and nephrogenesis to identify mechanisms and timepoints that might give rise to low nephron endowment. Sprague–Dawley rats were fed a normal protein (19.4% protein, NP) or LP (9% protein) diet for 3 weeks prior to mating and throughout gestation. Embryonic day 14.25 (E14.25) kidneys from males and females were either cultured for 2 days after which branching morphogenesis was quantified, or frozen for gene expression analysis. Real-time PCR was used to quantify expression of key nephrogenesis and branching morphogenesis genes at E14.25 and 17.25. At E17.25, nephron number was determined in fixed tissue. There was no effect of either maternal diet or sex on branching morphogenesis. Nephron number at E17.25 was 14% lower in male and female LP offspring than in NP controls. At E14.25 expression levels of genes involved in branching morphogenesis (Gfrα1, Bmp4, Gdnf) and nephrogenesis (Hnf4a, Pax2, Wnt4) were similar in the dietary groups, but significant differences between sexes were identified. At E17.25, expression of Gfrα1, Gdnf, Bmp4, Pax2 and Six2 was lower in LP offspring than NP offspring, in both male and female offspring. These findings provide new insights into how a LP diet leads to low nephron endowment and renal sexual dimorphism.  相似文献   
25.
In chick and mouse, heart fields undergo dynamic morphological spatiotemporal changes during heart tube formation. Here, the dynamic change in spatial polarity of such fields is discussed and a new perspective on the heart fields is proposed. The heart progenitor cells delaminate through the primitive streak and migrate in a semicircular trajectory craniolaterally forming the bilateral heart fields as part of the splanchnic mesoderm. They switch their polarity from anteroposterior to mediolateral. The anterior intestinal portal posterior descent inverts the newly formed heart field mediolateral polarity into lateromedial by 125° bending. The heart fields revert back to their original anteroposterior polarity and fuse at the midline forming a semi heart tube by completing their half circle movement. Several names and roles were assigned to different portions of the heart fields: posterior versus anterior, first versus second, and primary versus secondary heart field. The posterior and anterior heart fields define basically physical fields that form the inflow–outflow axis of the heart tube. The first and second heart fields are, in contrast, temporal fields of differentiating cardiomyocytes expressing myosin light chain 2a and undifferentiated and proliferating precardiac mesoderm expressing Isl1 gene, respectively. The two markers present a complementary pattern and are expressed transiently in all myocardial lineages. Thus, Isl1 is not restricted to a portion of the heart field or one of the two heart lineages as has been often assumed. Anat Rec, 297:175–182, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   
26.
Gustatory papillae are complex organs that are composed of 1) an epithelium, 2) specialized sensory cells within the epithelium (the taste buds), 3) a broad connective core, and 4) sensory innervation. During papilla development, cells in the various tissue compartments must divide, aggregate, detach, migrate, and reaggregate in relation to each other, but factors that regulate such steps are poorly understood and have not been extensively studied. All of these processes potentially require participation of the extracellular matrix. Therefore, we have studied temporal and spatial patterns of immunoreactivity for two extracellular matrix molecules, tenascin and laminin, in the developing fungiform and circumvallate papillae of fetal, perinatal, and adult sheep tongue. To determine relations of tenascin and laminin to sensory innervation, we used an antibody to growth-associated protein (GAP-43) to label growing nerves. Immunocytochemical distributions of tenascin and laminin alter during development in a manner that reflects morphogenesis rather than histologic boundaries of the taste papillae. In early fungiform papillae, tenascin immunoreactivity is very weak within the mesenchyme of the papilla core. However, there is a subsequent shift to an intense, restricted localization in the apical papilla core only—directly under taste bud-bearing regions of the papilla epithelium. In early circumvallate papillae, tenascin immunoreactivity is patchy within the papilla core and within the flanking, nongustatory papillae. Later, immunoreactivity is restricted to the perimeter of the central papilla core, under epithelium that contains developing taste buds. In fungiform and circumvallate papillae, the shift in tenascin immunolocalization is associated with periods of taste bud formation and multiplication within the papilla epithelium and with extensive branching of the sensory innervation in the papilla apex. Laminin immunoreactivity, although it is continuous throughout the basement membrane of general lingual epithelium, is interrupted in the epithelial basement membrane of early fungiform and circumvallate papillae in regions where taste buds are forming. The breaks are large in young fetuses, when taste buds first develop, and are evidenced later as punctate disruptions. Heparan sulfate proteoglycan immunoreactivity confirms that these are basement membrane discontinuities. GAP-43 label coincides with innervation of the papilla core and is most extensive in regions where tenascin immunoreactivity is weak or absent. GAP-43 immunoreactivity is also found in early taste buds: Later, it is extensive within more mature multiple taste buds, presumably in relation to synaptogenesis. We propose that tenascin has a role in promoting deadhesion of cells in the papilla epithelium during periods of taste bud formation and multiplication. Discontinuities in the epithelial basement membrane under developing taste buds, indicated with laminin and heparan sulfate proteoglycan immunoreactivity, may interact to facilitate taste bud morphogenesis and multiplication, to permit access of papilla innervation to the forming taste buds, and/or to allow epithelial/mesenchymal interactions during papilla and taste bud development. © 1996 Wiley-Liss, Inc.  相似文献   
27.
28.
Melatonin and serotonin are important signaling and stress mitigating molecules that play important roles across growth and development in plants. Despite many well‐documented responses, a systematic investigation of the entire metabolic pathway (tryptophan, tryptamine, and N‐acetylserotonin) does not exist, leaving many open questions. The objective of this study was to determine the responses of Hypericum perforatum (L.) to melatonin, serotonin, and their metabolic precursors. Two well‐characterized germplasm lines (#4 and 112) created by mutation and a haploid breeding program were compared to wild type to identify specific responses. Germplasm line 4 has lower regenerative and photosynthetic capacity than either wild type or line 112, and there are documented significant differences in the chemistry and physiology of lines 4 and 112. Supplementation of the culture media with tryptophan, tryptamine, N‐acetylserotonin, serotonin, or melatonin partially reversed the regenerative recalcitrance and growth impairment of the germplasm lines. Quantification of phytohormones revealed crosstalk between the indoleamines and related phytohormones including cytokinin, salicylic acid, and abscisic acid. We hypothesize that melatonin and serotonin function in coordination with their metabolites in a cascade of phytochemical responses including multiple pathways and phytohormone networks to direct morphogenesis and protect photosynthesis in H. perforatum.  相似文献   
29.
30.
Fertility in mammals is dependant on females having an adequate primordial follicle pool to supply oocytes for fertilization. The formation of primordial follicles is called ovarian follicular assembly. In rats and mice progesterone and estradiol have been shown to inhibit follicle assembly with assembly occurring after birth when the pups are removed from the high-steroid maternal environment. In contrast, primordial follicle assembly in other species, such as cattle and humans, occurs during fetal development before birth. The objective of the current study is to determine if progesterone levels regulate primordial follicle assembly in fetal bovine ovaries. Ovaries and blood were collected from bovine fetuses. Interestingly, ovarian progesterone and estradiol concentrations were found to decrease with increasing fetal age and correlated to increased primordial follicle assembly. Microarray analysis of fetal ovary RNA suggests that progesterone membrane receptor and estrogen nuclear receptor are expressed. Treatment of fetal bovine ovary cultures with a higher progesterone concentration significantly decreased primordial follicle assembly. Observations indicate that progesterone affects ovarian primordial follicle assembly in cattle, as it does in rats and mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号