首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   989篇
  免费   21篇
  国内免费   12篇
儿科学   1篇
基础医学   243篇
临床医学   8篇
内科学   17篇
神经病学   633篇
特种医学   1篇
外科学   15篇
综合类   26篇
预防医学   2篇
药学   69篇
中国医学   7篇
  2023年   3篇
  2022年   5篇
  2021年   8篇
  2020年   5篇
  2019年   9篇
  2018年   9篇
  2017年   5篇
  2016年   10篇
  2015年   12篇
  2014年   18篇
  2013年   24篇
  2012年   24篇
  2011年   27篇
  2010年   26篇
  2009年   32篇
  2008年   37篇
  2007年   29篇
  2006年   45篇
  2005年   34篇
  2004年   26篇
  2003年   40篇
  2002年   29篇
  2001年   30篇
  2000年   26篇
  1999年   27篇
  1998年   39篇
  1997年   24篇
  1996年   19篇
  1995年   28篇
  1994年   16篇
  1993年   25篇
  1992年   17篇
  1991年   19篇
  1990年   21篇
  1989年   16篇
  1988年   20篇
  1987年   16篇
  1986年   25篇
  1985年   37篇
  1984年   28篇
  1983年   28篇
  1982年   16篇
  1981年   21篇
  1980年   22篇
  1979年   9篇
  1978年   6篇
  1977年   5篇
  1976年   14篇
  1975年   3篇
  1973年   4篇
排序方式: 共有1022条查询结果,搜索用时 187 毫秒
51.
Sucrose density centrifugation has been used to characterize the relative levels of AChE molecular forms in different parts of the brain, during development, or in various disease states. We have examined the influence of various tissue or sample storage and handling techniques on the abundance of the 4S and 10S molecular forms of AChE in rat forebrain. Our results demonstrate that freezing either a subcellular fraction or the intact tissue causes dramatic shifts in the level of the 4S and 10S molecular forms as compared to the values obtained in fresh tissue. Total AChE activity was unchanged suggesting that 4S and 10S forms are equally active and that 4S AChE is easily dissociated from 10S. These observations suggest that 4S and 10S molecular forms in brain are extremely labile and that great care should be taken when studying the factors that regulate these forms.  相似文献   
52.
目的:观察大鼠短暂性局灶性脑缺血后前脑室下带(SVZ)神经发生的增殖规律。方法:将SD大鼠随机分为正常对照组、假手术组和缺血实验组,缺血实验组再分为缺血后1、4、7、10、14d组。线栓法制作局灶性脑缺血模型;BrdU标记S期细胞并用免疫组织化学方法检测含BrdU的阳性细胞;测量SVZ区域BrdU阳性细胞核的总面积。结果:在缺血侧,缺血后4d BrdU阳性细胞核的总面积明显增加,7d时达到峰值,随后开始下降,在14d时明显下降,但仍高于正常对照组;在缺血对侧,该区域也表现出同样的表达规律,在缺血后10d达到峰值,但增幅较小。结论:短暂性局灶性脑缺血可促进前脑室下带的神经发生,提示成年脑有潜在的自我修复能力。  相似文献   
53.
双苯氟嗪抑制FasL分子表达的基因转录机制   总被引:1,自引:0,他引:1  
研究双苯氟嗪对Fas配体分子表达抑制的基因转录机制的影响。通过四血管阻断法建立大鼠全脑缺血再灌注损伤模型, 所有实验动物缺血15 min, 再灌注72 h。实验大鼠随机分为4组: 假手术组、 缺血再灌注组、 双苯氟嗪组及环孢素A组。药物干预于再灌注后2 h内给药, 每日1次, 连续3 d。双苯氟嗪按20 mg·kg-1灌胃给药, 环孢素A 10 mg·kg-1腹腔注射。应用蛋白质印迹和电泳迁移率改变分析技术检测海马CA I区Fas配体(FasL)、 转录因子NFATc、 I-κB-α、 phospho-I-κB-α蛋白表达以及测定FasL分子启动子远端及FasL分子启动子近端NFAT FasL-DNA结合活性。结果表明, 双苯氟嗪明显降低FasL、 NFATc的蛋白表达并显著减少FasL分子启动子远端及FasL分子启动子近端NFAT结合位点的NFAT-DNA结合活性。各组之间I-κB-α蛋白表达无显著区别。未观察到各组phospho-I-κB-α蛋白表达。由此可见, 双苯氟嗪通过降低转录因子NFATc的FasL分子的基因转录功能, 从而抑制FasL分子的基因表达。  相似文献   
54.
Kang TC  Hwang IK  Park SK  An SJ  Nam YS  Kim DH  Lee IS  Won MH 《Brain research》2003,977(2):284-289
In a previous study, we suggested that GABAergic neurons might be resistant to ischemic insult, because of the maintenance of the GABA shunt, which is one of the ATP synthetic pathways in neurons. In the present study, we identified Na(+)-K(+) ATPase immunoreactivity in the gerbil hippocampus in order to determine whether changes in Na(+)-K(+) ATPase immunoreactivity correlate with GABA shunt following ischemic insult. At 12 h after ischemia-reperfusion, Na(+)-K(+) ATPase immunoreactivity accumulated in some neurons in the CA1 region. However, the protein content of Na(+)-K(+) ATPase was not altered. Interestingly, the density of Na(+)-K(+) ATPase immunoreactivity in neurons and the protein content in the CA1 region was intensified in the 24 h post-ischemic group. As a result of double immunofluorescence study, Na(+)-K(+) ATPase immunoreactive neurons were identified with GABAergic neurons. Therefore, our findings suggest that the increase of Na(+)-K(+) ATPase in GABAergic neurons may be able to explain the resistance of these cells to ischemic insult, and support our previous hypothesis that GABA may play an important role as a metabolite in the survival of GABAergic neurons after ischemic insult.  相似文献   
55.
The parahippocampal area is a cortical region of the avian dorsomedial telencephalon. In the chicken embryo, it contains discrete clusters of cadherin-7-positive cells, which are embedded in a cadherin-7-negative matrix. In the present work, the development and spatial distribution of these clusters is studied in whole-mount specimens. The clusters form a complex, coherent pattern of patches of variable size, spacing, and staining intensity. The pattern is especially prominent and regularly spaced in the rostral part of the caudolateral parahippocampal area. Here, it consists of stripes and connecting bridges with an average periodicity of approximately 0.3 mm. This pattern vaguely resembles some animal fur patterns and the ocular dominance domain of the mammalian visual cortex. The cadherin-7-positive patches also differ from their surrounding area by their cytoarchitecture and their increased acetylcholinesterase activity, suggesting that they represent functionally specialized subregions within the parahippocampal area. During development, the patchiness is first observed between 9 and 10 days of incubation and gradually becomes more prominent until 15 days of incubation. Our results indicate that the patchy organization of cortical gray matter on a small scale of periodicity (below 1 mm), which is well studied in the mammalian neocortex, is also found in the avian telencephalon.  相似文献   
56.
A mouse monoclonal antibody (clone 62-2E8) raised against a human recombinant high-affinity choline transporter (CHT)-glutathione-S-transferase fusion protein was used to determine the distribution of immunoreactive profiles containing this protein in the monkey central nervous system (CNS). Within the monkey telencephalon, CHT-immunoreactive perikarya were found in the striatum, nucleus accumbens, medial septum, vertical and horizontal limb nuclei of the diagonal band, nucleus basalis complex, and the bed nucleus of the stria terminalis. Dense fiber staining was observed within the islands of Calleja, olfactory tubercle, hippocampal complex, amygdala; moderate to light fiber staining was seen in iso- and limbic cortices. CHT-containing fibers were also present in sensory and limbic thalamic nuclei, preoptic and hypothalamic areas, and the floccular lobe of the cerebellum. In the brainstem, CHT-immunoreactive profiles were observed in the pedunculopontine and dorsolateral tegmental nuclei, the Edinger-Westphal, oculomotor, trochlear, trigeminal, abducens, facial, ambiguus, dorsal vagal motor, and hypoglossal nuclei. In the spinal cord, CHT-immunoreactive ventral horn motoneurons were seen in close apposition to intensely immunoreactive C-terminals at the level of the cervical spinal cord. CHT immunostaining revealed a similar distribution of labeled profiles in the aged human brain and spinal cord. Dual fluorescent confocal microscopy revealed that the majority of CHT immunoreactive neurons contained the specific cholinergic marker, choline acetyltransferase, at all levels of the monkey CNS. The present observations indicate that the present CHT antibody labels cholinergic structures within the primate CNS and provides an additional marker for the investigation of cholinergic neuronal function in aging and disease.  相似文献   
57.
Brain-derived neurotrophic factor (BDNF) enhances synaptic plasticity and neuron function. We have reported that voluntary exercise increases BDNF mRNA levels in the hippocampus; however, mechanisms underlying this regulation have not been defined. We hypothesized that medial septal cholinergic and/or gamma amino butyric acid (GABA)ergic neurons, which provide a major input to the hippocampus, may regulate the baseline gene expression and exercise-dependent gene upregulation of this neurotrophin. Focal lesions were produced by medial septal infusion of the saporin-linked immunotoxins 192-IgG-saporin or OX7-saporin. 192-IgG-saporin produced a selective and complete loss of medial septal cholinergic neurons with no accompanying GABA loss. Baseline BDNF mRNA was reduced in the hippocampus of sedentary animals, but exercise-induced gene upregulation was not impaired, despite complete loss of septo-hippocampal cholinergic afferents. OX7-saporin produced a graded lesion of the medial septum characterized by predominant GABA neuron loss with less reduction in the number of cholinergic cells. OX7-saporin lesion reduced baseline hippocampal BDNF mRNA and attenuated exercise-induced gene upregulation, in a dose-dependent manner. These results suggest that combined loss of septal GABAergic and cholinergic input to the hippocampus may be important for exercise-dependent BDNF gene regulation, while cholinergic activity on its own is not sufficient. These results are discussed in relation to their implications for aging and Alzheimer's disease.  相似文献   
58.
Sex hormones may exert neuroprotective effects in various models of brain lesions. Male and female Long-Evans rats were subjected to intracerebroventricular injections of 2 microg 192 IgG-saporin or vehicle. Starting 2 days before surgery, half the male rats were treated with estradiol for 7 days. Three weeks after surgery, they were sacrificed for histochemical staining of acetylcholinesterase (AChE) and densitometric evaluations. The lesion induced a substantial to dramatic decrease of the AChE-positive fiber density in the cingulate, somatosensory, piriform, retrosplenial and perirhinal cortices, and in the hippocampus. Weak effects were found in the striatum. There was no significant decrease in the dorsal thalamus. Sex had no significant effect on AChE-positive staining in any brain area. In males, estradiol treatment did not alter the effects of 192 IgG-saporin. These results show that sex or estradiol treatment in male rats does not interfere with the immunotoxic effects of intracerebroventricular injections of 192 IgG-saporin on cholinergic projections from the basal forebrain.  相似文献   
59.
The role of cholinergic basal forebrain (CBF) neurons in mnemonic behaviors was investigated using the immunotoxin 192IgG-saporin. We assessed two routes of immunotoxin administration: intracerebroventricular (ICV) and intraparenchymal (INTRA). INTRA lesions of the medial septum (MS) and/or the nucleus basalis magnocellularis (NBM) were compared with ICV-lesions, INTRA-phosphate-buffered saline injected, and naive controls. The INTRA-NBM/MS and ICV NBM/MS lesions produced a similar depletion of choline acetyltransferase activity of 80% across all CBF projections. Water maze performance was similarly impaired for ICV- and INTRA-NBM/MS animals during various phases of testing, whereas animals with individual lesions of the NBM or MS performed at the level of controls. In contrast to the allocentric demands of water maze performance, the egocentric-based T-maze task revealed a vast group difference between the ICV- and the INTRA-NBM/MS animals. INTRA-NBM/MS animals showed a severe deficit in the non-match- and match-to-position version, whereas again, animals with single lesions were unimpaired. In addition, a dichotomy between animals with complete cholinergic deafferentation was observed in the inhibitory avoidance task. ICV-NBM/MS showed a diminished retention for the aversive stimulus while the INTRA-NBM/MS animals remembered well. During plus maze testing, only the INTRA-NBM/MS animals had a reduced level of anxiety. Although non-CBF regions may have been differently affected by the two routes of immunotoxin administration, global measures of arousal, motivation, and motor initiation did not reveal a different behavioral pattern. Our findings suggest that a dynamic interplay exists between the degree of cholinergic deficit and task demands revealing different types of mnemonic impairments.  相似文献   
60.
Electrophysiological activity was recorded from single neurons (units) in the hippocampal formation (HF) of freely moving homing pigeons in order to provide a taxonomy of unit types found in the avian HF; a taxonomy that could be used to define regional subdivisions and be compared with unit types found in the mammalian hippocampus. Two distinct types of unit were observed in the avian HF. One type was uniformly characterized by relatively rapid firing rates and shorter spike widths, and was found throughout the HF. The other type was more variable in activity profile but, compared with the fast-firing units, was characterized by slower firing rates and longer spike widths. However, despite the variable nature of the slow-firing units, most slow-firing units recorded within a given anatomical region displayed similar firing rates, spike widths, and interspike intervals. In general, ventral HF units displayed activity patterns similar to projection cells found in the mammalian Ammon's horn. Most dorsocaudal units displayed activity patterns similar to presumed granular cells in the mammalian dentate gyrus. By contrast, most dorsorostral units displayed activity patterns similar to a type of unit found in the mammalian subiculum. Although different in some details, the overall activity profile of units found in the avian HF, and their regional distribution, is strikingly similar to unit types found in the mammalian hippocampus, suggesting that unit activity profile is one hippocampal dimension conserved through evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号