首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2078篇
  免费   112篇
  国内免费   67篇
耳鼻咽喉   14篇
儿科学   11篇
妇产科学   4篇
基础医学   398篇
口腔科学   7篇
临床医学   49篇
内科学   183篇
皮肤病学   11篇
神经病学   785篇
特种医学   77篇
外科学   49篇
综合类   136篇
预防医学   82篇
眼科学   16篇
药学   299篇
中国医学   70篇
肿瘤学   66篇
  2023年   13篇
  2022年   24篇
  2021年   30篇
  2020年   27篇
  2019年   19篇
  2018年   31篇
  2017年   34篇
  2016年   34篇
  2015年   50篇
  2014年   98篇
  2013年   96篇
  2012年   92篇
  2011年   94篇
  2010年   82篇
  2009年   87篇
  2008年   77篇
  2007年   64篇
  2006年   77篇
  2005年   50篇
  2004年   55篇
  2003年   62篇
  2002年   46篇
  2001年   39篇
  2000年   51篇
  1999年   32篇
  1998年   49篇
  1997年   46篇
  1996年   35篇
  1995年   34篇
  1994年   34篇
  1993年   36篇
  1992年   36篇
  1991年   31篇
  1990年   38篇
  1989年   34篇
  1988年   37篇
  1987年   37篇
  1986年   51篇
  1985年   68篇
  1984年   57篇
  1983年   58篇
  1982年   47篇
  1981年   45篇
  1980年   40篇
  1979年   24篇
  1978年   13篇
  1977年   18篇
  1976年   8篇
  1975年   9篇
  1974年   3篇
排序方式: 共有2257条查询结果,搜索用时 31 毫秒
21.
When the function of salivary glands was abolished by applying ligatures to their ducts and the function of one half of the diaphragm muscle was abolished by sectioning of its phrenic nerve, the choline acetyltransferase activity was found to be increased in not duct-ligated glands and in the intact hemidiaphragm 4 weeks later. The increase was not seen within the first week. The increase in activity appears to be particularly manifested in the nerve endings, since it was seen in the hemidiaphragm but not in the phrenic nerve. Increased stream of impulses in the efferent nerves is thought to be the cause of this increase in choline acetyltransferase activity.  相似文献   
22.
Choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) are proteins that are required for cholinergic neurotransmission. Present knowledge concerning the organization of cholinergic structures has been derived primarily from immunohistochemistry for ChAT. In the present study, we investigated the distribution of mRNAs and the corresponding proteins for ChAT and VAChT by in situ hybridization histochemistry and immunohistochemistry. The patterns of distribution of perikarya containing ChAT mRNA, ChAT protein, VAChT mRNA and VAChT protein were similar in most regions, and co-localization in the same neuron of mRNAs for ChAT and VAChT, that of ChAT mRNA and ChAT protein, and that of VAChT mRNA and VAChT protein were demonstrated. However, in the cerebral cortex and hypothalamus, ChAT-immunoreactive perikarya were present, but they did not contain mRNAs for ChAT and VAChT, and VAChT protein. On the other hand, in the cerebellum, Purkinje cell bodies contained VAChT mRNA and VAChT protein, but they did not contain either ChAT mRNA or ChAT protein. Axon bundles were clearly revealed by immunohistochemistry for ChAT, but they were not detected by that for VAChT. Both ChAT and VAChT antibodies revealed preterminal axons and terminal-like structures. In the forebrain, they were present in the olfactory bulb, nucleus of the lateral olfactory tract, olfactory tubercle, lateral septal nucleus, amygdala, hippocampus, neocortex, caudate-putamen, thalamus and median eminence of the hypothalamus. In the brainstem, they were localized in the superior colliculus, interpeduncular nucleus and some cranial nerve motor nuclei, and further in the ventral horn of the spinal cord. These results indicate strongly that ChAT and VAChT are expressed in most of the cholinergic neurons, and that immunohistochemistry for VAChT is as useful to detect cholinergic terminal fields as that for ChAT.  相似文献   
23.
24.
Summary Several lines of evidence suggest a role for ACh in the mediation of cerebello-thalamic transmission. The physiological, pharmacological and biochemical experiments described were designed to test this hypothesis for the rat cerebello-thalamic pathway. Unilateral electrolytic lesions of the superior cerebellar peduncle resulted in modest falls of CAT from both ventromedial thalamic nuclei (contralateral 35%, ipsilateral 15%). Iontophoretic application of ACh to relay cells evokes three types of response (i) excitation (ii) inhibition (iii) polyphasic combinations of (i) and (ii). The type of response evoked was directly related to the firing pattern of the cell. Thus, for example, excitatory responses were never recorded during high-frequency bursting but were easily evoked following a switch to tonic, single-spike activity. All responses to ACh and synaptic responses to cerebellar stimulation were sensitive to muscarinic but not to nicotinic cholinergic antagonists. The nicotinic antagonist mecamylamine was a potent blocker of excitant amino acid responses but had no effect on cerebellarevoked synaptic responses. Cholinergic and anticholinergic agents had a profound action on relay cell firing pattern. ACh promoted single-spike activity whereas atropine promoted high-frequency bursting. The actions of ACh are discussed with reference to recently discovered voltage-sensitive ionic conductances. Because of the modulatory action of ACh on relay cell firing pattern and excitability no firm conclusion can be reached concerning the hypothesis under test here. We tentatively suggest a dual role for ACh as both neurotransmitter and neuromodulator.  相似文献   
25.
26.
Blood flow changes in response to various drugs in simultaneously autoperfused canine subcutaneous adipose tissue and gracilis muscle were compared to study the vascular β-adrenoceptors. Compared to isoprenaline the β2-selective agonist salbutamol was 4–6 times more potent as a vasodilator in the muscle than in adipose tissue. Furthermore two β1-selective agonists (Tazolol and H80/62) caused vasodilatation in adipose tissue but not in the gracilis muscle. When given by close i.a. injection after β-adrenoceptor blockade, adrenaline was a more potent vasoconstrictor than noradrenaline in both tissues. Before β-blockade, however, noradrenaline was the more potent vasoconstrictor in the gracilis muscle whereas adrenaline was more potent in adipose tissue. Intravenous infusion of adrenaline in doses causing vasodilatation in the muscle caused vasoconstriction in adipose tissue whereas intravenous infusion of noradrenaline caused vasoconstriction in both tissues. The present findings suggest that the β-adrenoceptors mediating vasodilatation in skeletal muscle are mainly of the β2-type, whereas β1-adrenoceptors seem to predominate in subcutaneous adipose tissue. Since adrenaline is a much more potent β2- than β1-agonist, these differences point to different roles of intravascular adrenaline in the two sites. In skeletal muscle circulating adrenaline is mainly a vasodilator whereas in subcutaneous adipose tissue it mainly acts as a vasoconstrictor.  相似文献   
27.
One of the most common chemicals that behaves as an endocrine disruptor is the compound 4,4′-isopronylidenediphenol, called bisphenol-A. In the previous study, we reported that exposure to bisphenol-A induced the abnormality of dopamine receptor functions in the mouse limbic area, resulting in a supersensitivity of drugs of abuse-induced pharmacological actions. The present study was undertaken to investigate whether prenatal and neonatal exposures to bisphenol-A could alter other behavioral abnormalities such as anxiogenic behavior, motor learning behavior, or memory. In the present study, adult female mice were chronically treated with bisphenol-A-admixed powder food from mating to weaning. All experiments were performed using male pups. Here we found that prenatal and neonatal exposures to bisphenol-A failed to induce anxiogenic effects and motor-learning impairment using the light-dark test, elevated plus maze test, and rota-rod test. On the other hand, we found that prenatal and neonatal exposures to bisphenol-A induced the memory impairment using the step-through passive avoidance test. Immunohistochemical study showed the dramatic reduction in choline acetyltransferase-like immunoreactivity, which is a marker of acetylcholine (ACh) production, in the hippocampus of mice prenatally and neonatally exposed to bisphenol-A. These results suggest that chronic exposures to bisphenol-A could induce the memory impairment associated with the reduction in ACh production in the hippocampus.  相似文献   
28.
In order to determine the effect of Alzheimer's disease on the relative distribution of soluble and membrane-bound molecular forms of acetylcholinesterase (AChE) in the brain, postmortem samples (delay interval less than 12 h) were obtained from parietal cortex (Brodmann area 40) and hippocampus as well as the areas containing their respective projection nuclei, i.e., substantia innominata and septal nucleus, in 9 patients with Alzheimer's disease (AD) and 4 normal controls. The monomer (G1), dimer (G2), and tetramer (G4) forms of AChE were examined. In AD compared to controls, significant changes occurred in area 40 and hippocampus but not in the areas containing projection nuclei, and included loss of mean total AChE activity, decrease in the relative percentage of membrane-bound G4, and increase in the relative percentage of soluble G1---G2. Percent of soluble G4 was unaffected in AD brain. In area 40 but not hippocampus a large increase in percent membrane-bound G1-G2 occurred. Thus, these results emphasize that the selective decrease in membrane-bound G4 accounts for the decrease in total G4 activity in AD brain.  相似文献   
29.
Summary Putative cholinergic axons and synaptic endings were demonstrated in the substantia nigra (SN) of the rat by light and electron microscopy on the basis of the localization of choline acetyltransferase (ChAT) immunoreactivity. The distribution of ChAT immunoreactivity in the SN as demonstrated by light microscopy revealed a modest network of ChAT-immunoreactive beaded axons in the SNc, in comparison to a relatively sparse distribution in the SNr. These axonal profiles were most dense in the middle of the rostral-caudal extent of the SNc and appeared to be concentrated in the middle third of the medial-lateral extent. By electron microscopy, unmyelinated, small diameter (0.25 m) ChAT-immuno-reactive axons were observed interspersed among numerous other non-immunoreactive axons in the SNc. ChAT-immunoreactive synaptic endings were observed in juxtaposition to small caliber (0.5 m) non-immunoreactive dendrites, and contained numerous spheroidal synaptic vesicles and occasional mitochondria. Synaptic contact zones were characterized by an accumulation of synaptic vesicles along the presynaptic membrane, and a prominent postsynaptic densification producing an asymmetrical pre-/postsynaptic membrane profile typical of excitatory synapses. These findings provide direct evidence for a cholinergic innervation of the SN, and suggest that this input may have an excitatory effect on neuronal elements in the SNc.  相似文献   
30.
The ventral part of the cat oral pontine reticular nucleus (vRPO) is the site in which microinjections of small dose and volume of cholinergic agonists produce long-lasting rapid eye movement sleep with short latency. The present study determined the precise location and proportions of the cholinergic brainstem neuronal population that projects to the vRPO using a double-labeling method that combines the neuronal tracer horseradish peroxidase–wheat germ agglutinin with choline acetyltransferase immunocytochemistry in cats. Our results show that 88.9% of the double-labeled neurons in the brainstem were located, noticeably bilaterally, in the cholinergic structures of the pontine tegmentum. These neurons occupied not only the pedunculopontine and laterodorsal tegmental nuclei, which have been described to project to other pontine tegmentum structures, but also the locus ceruleus complex principally the locus ceruleus and peri-, and the parabrachial nuclei. Most double-labeled neurons were found in the pedunculopontine tegmental nucleus and locus ceruleus complex and, much less abundantly, in the laterodorsal tegmental nucleus and the parabrachial nuclei. The proportions of these neurons among all choline acetyltransferase positive neurons within each structure were highest in the locus ceruleus complex, followed in descending order by the pedunculopontine and laterodorsal tegmental nuclei and then, the parabrachial nuclei. The remaining 11.1% of double-labeled neurons were found bilaterally in other cholinergic brainstem structures: around the oculomotor, facial and masticatory nuclei, the caudal pontine tegmentum and the praepositus hypoglossi nucleus. The disperse origins of the cholinergic neurons projecting to the vRPO, in addition to the abundant noncholinergic afferents to this nucleus may indicate that cholinergic stimulation is not the only or even the most decisive event in the generation of REM sleep.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号