首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   892篇
  免费   16篇
  国内免费   18篇
耳鼻咽喉   1篇
基础医学   58篇
口腔科学   255篇
临床医学   22篇
内科学   446篇
皮肤病学   24篇
神经病学   6篇
特种医学   6篇
外科学   21篇
综合类   65篇
预防医学   3篇
药学   15篇
中国医学   2篇
肿瘤学   2篇
  2023年   15篇
  2022年   205篇
  2021年   189篇
  2020年   24篇
  2019年   2篇
  2018年   10篇
  2017年   4篇
  2016年   10篇
  2015年   25篇
  2014年   45篇
  2013年   41篇
  2012年   19篇
  2011年   28篇
  2010年   32篇
  2009年   20篇
  2008年   18篇
  2007年   19篇
  2006年   18篇
  2005年   18篇
  2004年   19篇
  2003年   22篇
  2002年   15篇
  2001年   16篇
  2000年   14篇
  1999年   12篇
  1998年   16篇
  1997年   6篇
  1996年   7篇
  1995年   5篇
  1994年   1篇
  1993年   6篇
  1992年   3篇
  1991年   6篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   7篇
  1986年   2篇
  1985年   11篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1977年   3篇
  1976年   1篇
排序方式: 共有926条查询结果,搜索用时 93 毫秒
81.
The present paper analyzed the microstructural characteristics and the mechanical properties of a Ti–Nb–Zr–Fe–O alloy of β-Ti type obtained by combining severe plastic deformation (SPD), for which the total reduction was of εtot = 90%, with two variants of super-transus solution treatment (ST). The objective was to obtain a low Young’s modulus with sufficient high strength in purpose to use the alloy as a biomaterial for orthopedic implants. The microstructure analysis was conducted through X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM) investigations. The analyzed mechanical properties reveal promising values for yield strength (YS) and ultimate tensile strength (UTS) of about 770 and 1100 MPa, respectively, with a low value of Young’s modulus of about 48–49 GPa. The conclusion is that satisfactory mechanical properties for this type of alloy can be obtained if considering a proper combination of SPD + ST parameters and a suitable content of β-stabilizing alloying elements, especially the Zr/Nb ratio.  相似文献   
82.
In this paper, the fatigue performance of the aluminide layer-coated and as-received MAR 247 nickel superalloy with three different initial microstructures (fine grain, coarse grain and column-structured grain) was monitored using nondestructive, eddy current methods. The aluminide layers of 20 and 40 µm were obtained through the chemical vapor deposition (CVD) process in the hydrogen protective atmosphere for 8 and 12 h at the temperature of 1040 °C and internal pressure of 150 mbar. A microstructure of MAR 247 nickel superalloy and the coating were characterized using light optical microscopy (LOM), scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (EDS). It was found that fatigue performance was mainly driven by the initial microstructure of MAR 247 nickel superalloy and the thickness of the aluminide layer. Furthermore, the elaborated methodology allowed in situ eddy current measurements that enabled us to localize the area with potential crack initiation and its propagation during 60,000 loading cycles.  相似文献   
83.
The maximally disordered (MD) phases with the general formula Y5−xPrxSb3−yMy (M = Sn, Pb) are formed with partial substitution of Y by Pr and Sb by Sn or Pb in the binary Y5Sb3 compound. During the electrochemical lithiation and sodiation, the formation of Y5-xPrxSb3-yMyLiz and Y5−xPrxSb3−yMyNaz maximally disordered–high entropy intermetallic phases (MD-HEIP), as the result of insertion of Li/Na into octahedral voids, were observed. Carbon nanotubes (CNT) are an effective additive to improve the cycle stability of the Y5−xPrxSb3−yMy (M = Sn, Pb) anodes for lithium-ion (LIBs) and sodium-ion batteries (SIBs). Modification of Y5−xPrxSb3−ySny alloys by carbon nanotubes allowed us to significantly increase the discharge capacity of both types of batteries, which reaches 280 mAh · g−1 (for LIBs) and 160 mAh · g−1 (for SIBs), respectively. For Y5−xPrxSb3−yPby alloys in which antimony is replaced by lead, these capacities are slightly smaller and are 270 mAh · g−1 (for LIBs) and 155 mAh · g−1 (for SIBs), respectively. Results show that structure disordering and CNT additives could increase the electrode capacities up to 30% for LIBs and up to 25% for SIBs.  相似文献   
84.
Low-alloyed zirconium alloys are widely used in nuclear applications due to their low neutron absorption cross-section. These alloys, however, suffer from limited strength. Well-established guidelines for the development of Ti alloys were applied to design new two-phase ternary Zr alloys with improved mechanical properties. Zr-4Sn-4Nb and Zr-8Sn-4Nb alloys have been manufactured by vacuum arc melting, thermo-mechanically processed by annealing, forging, and aging to various microstructural conditions and thoroughly characterized. Detailed Scanning electron microscopy (SEM) analysis showed that the microstructural response of the alloys is rather similar to alpha + beta Ti alloys. Duplex microstructure containing primary alpha phase particles surrounded by lamellar alpha + beta microstructure can be achieved by thermal processing. Mechanical properties strongly depend on the previous treatment. Ultimate tensile strength exceeding 700 MPa was achieved exceeding the strength of commercial Zr alloys for nuclear applications by more than 50%. Such an improvement in strength more than compensates for the increased neutron absorption cross-section. This study aims to exploit the potential of alpha + beta Zr alloys for nuclear applications.  相似文献   
85.
Isothermal annealing of a eutectic dual phase Ni–Mn–Sn–Fe alloy was carried out to encourage grain growth and investigate the effects of grain size of the γ phase on the martensitic transformation behaviour and mechanical properties of the alloy. It is found that with the increase of the annealing time, the grain size and volume fraction of the γ phase both increased with the annealing time predominantly by the inter-diffusion of Fe and Sn elements between the γ phase and the Heusler matrix. The isothermal anneals resulted in the decrease of the e/a ratio and suppression of the martensitic transformation of the matrix phase. The fine γ phase microstructure with an average grain size of 0.31 μm showed higher fracture strength and ductility values by 28% and 77% compared to the coarse-grained counterpart with an average grain size of 3.31 μm. The fine dual phase microstructure shows a quasi-linear superelasticity of 4.2% and very small stress hysteresis during cyclic loading, while the coarse dual phase counterpart presents degraded superelasticity of 2.6% and large stress hysteresis. These findings indicate that grain size refinement of the γ phase is an effective approach in improving the mechanical and transformation properties of dual phase Heusler alloys.  相似文献   
86.
The NiAl–Cr–Co–X alloys were produced by centrifugal self-propagating high-temperature synthesis (SHS) casting. The effects of dopants X = La, Mo, Zr, Ta, and Re on combustion, as well as the phase composition, structure, and properties of the resulting cast alloys, have been studied. The greatest improvement in overall properties was achieved when the alloys were co-doped with 15% Mo and 1.5% Re. By forming a ductile matrix, molybdenum enhanced strength characteristics up to the values σucs = 1604 ± 80 MPa, σys = 1520 ± 80 MPa, and εpd = 0.79%, while annealing at T = 1250 ℃ and t = 180 min improved strength characteristics to the following level: σucs = 1800 ± 80 MPa, σys = 1670 ± 80 MPa, and εpd = 1.58%. Rhenium modified the structure of the alloy and further improved its properties. The mechanical properties of the NiAl, ZrNi5, Ni0.92Ta0.08, (Al,Ta)Ni3, and Al(Re,Ni)3 phases were determined by nanoindentation. The three-level hierarchical structure of the NiAl–Cr–Co+15%Mo alloy was identified. The optimal plasma treatment regime was identified, and narrow-fraction powders (fraction 8–27 µm) characterized by 95% degree of spheroidization and the content of nanosized fraction <5% were obtained.  相似文献   
87.
The increasing demands for Al sheets with superior mechanical properties and excellent formability require a profound knowledge of the microstructure and texture evolution in the course of their production. The present study gives a comprehensive overview on the primary- and secondary phase formation in AlMg(Mn) alloys with varying Fe and Mn additions, including variations in processing parameters such as solidification conditions, homogenization temperature, and degree of cold rolling. Higher Fe alloying levels increase the primary phase fraction and favor the needle-shaped morphology of the constituent phases. Increasing Mn additions alter both the shape and composition of the primary phase particles, but also promote the formation of dispersoids as secondary phases. The size, morphology, and composition of primary and secondary phases is further affected by the processing parameters. The average dispersoid size increases significantly with higher homogenization temperature and large primary particles tend to fragment during cold rolling. The microstructures of the final soft annealed states reflect the important effects of the primary and secondary phase particles on their evolution. The results presented in this paper regarding the relevant secondary phases provide the basis for an in-depth discussion of the mechanisms underlying the microstructure formation, such as Zener pinning, particle stimulated nucleation, and texture evolution, which is presented in Part II of this study.  相似文献   
88.
Secondary-cast aluminum alloys have increasing industrial applications. Their biggest deficiency is their impurity content, especially Fe, which has low solubility in Al and almost all the content creates intermetallic phases. This work examines the effect of higher Fe content on the microstructure and properties of A356.0 alloy. At the same time, no other possibility existed to affecting the brittleness of the formation of the β phases. The calculation of Fecrit, ratio of Mn/Fe, quantitative and computed tomography analysis of porosity and Fe plate-like phases, measurement of mechanical and fatigue properties, and fractography analysis were performed in this study. The results show that gravity die casting into a sand mold, and the non-usage of Mn addition or heat treatment, do not have a negative effect on increasing the size of the Fe-rich plate-like phases. The longest Fe-rich phases have limited the pore growth and ratios, but their higher thickness led to greater porosity formation. The mechanical and fatigue properties correlate with the Fecrit level and the highest were for the experimental alloy with 0.454 wt.% of Fe. The experimental results confirmed the fact that if the Fe plate-like phases have a length of up to 50 µm, the fatigue properties depend more on the size of porosity. If the length of the Fe needles is more than 50 µm, then the properties are mainly affected by the length of these Fe phases.  相似文献   
89.
Hydriding/dehydriding properties of a series of LaNi5 based alloys were compared by applying both hydrogen gas phase and electrochemical hydrogen charge/discharge methods. The highest hydrogen absorption capacity of 1.4 wt.% H2 was found for LaNi4.3Co0.4Al0.3, although LaNi4.8Sn0.2 also reveals comparable hydrogen capacity (>1.3%). A significant difference in the hydriding kinetics was observed for all studied alloys before and after activation. The activated alloys (5 cycles at 65 °C, 40 atm. H2) reach their maximum capacities after less than a minute, whereas the pure LaNi5 alloy needs several minutes for complete hydriding. The electrochemical hydriding/dehydriding behavior of the alloys reveals superior performance of LaNi4.3Co0.4Al0.3 and LaNi4.8Sn0.2 compared to the other compositions studied, as the capacity of LaNi4.8Sn0.2 decreases by only 10% for 60 charge/discharge cycles at a current density of 100 mA/g. Good agreement between the hydrogen sorption kinetics of the alloys obtained electrochemically and from hydrogen gas phase has also been observed.  相似文献   
90.
The microstructural evolution of dilute Al–Ag alloys in its early aging stage and at low temperatures ranging from 15 K to 300 K was studied by the combined use of Positron annihilation lifetime spectroscopy (PALS), high resolution transmission electron microscopy (HRTEM), and positron annihilation Coincidence Doppler broadening (CDB) techniques. It is shown that at low temperatures below 200 K, an Ag–vacancy complex is formed in the quenched alloy, and above 200 K, it decomposes into Ag clusters and monovacancies. Experimental and calculation results indicate that Ag clusters in Al–Ag alloys can act as shallow trapping sites, and the positron trapping rate is considerably enhanced by a decreasing measurement temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号