首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   0篇
基础医学   67篇
内科学   1篇
外科学   2篇
  2021年   1篇
  2018年   1篇
  2013年   67篇
  2012年   1篇
排序方式: 共有70条查询结果,搜索用时 31 毫秒
11.
For repairing cartilage defects by cartilage tissue engineering, it is important that engineered cartilage that is fabricated with scaffolds and cells can maintain the biological and physiological functions of cartilage, and also can induce three-dimensional spatial organization of chondrocytes. In this sense, hydrogels such as fibrin gels (FG) and hyaluronan (HA) are widely used for application in cartilage treatment. However, the use of hydrogels alone as a scaffold has a physical weakness; the mechanical properties of hydrogels are too weak to endure complex loading in the body. In this study, for mimicking a native cartilage microenvironment, we made cell–hybrid scaffold constructs with poly(L-lactide-co-ε-caprolactone) (PLCL) scaffolds and hydrogels to guide three-dimensional spatial organization of cells and extracellular matrix. A highly elastic scaffold was fabricated from PLCL with 85% porosity and 300–500 μm pore size using a gel-pressing method. The mixture of rabbit chondrocytes and hydrogels was seeded on PLCL scaffolds, and was subcutaneously implanted into nude mice for up to eight weeks. The cell seeding efficiency of the hybrid scaffolds with FG or HA was higher than that of the PLCL scaffolds. From in vivo studies, the accumulation of cartilaginous extracellular matrices of constructs, which was increased by hybridization of hydrogels and PLCL scaffolds, showed that the cell–hybrid scaffold constructs formed mature and well-developed cartilaginous tissue. In conclusion, the hybridization of hydrogels and PLCL scaffold for three-dimensional spatial organization of cells would provide a biomimetic environment where cartilage tissue growth is enhanced and facilitated. It can enhance the production of cartilaginous extracellular matrices and, consequently, improve the quality of the cartilaginous tissue formed.  相似文献   
12.
In order to enhance the mechanical performances of hyaluronic acid (HA) without compromising its biological activity, HA has been interpenetrating with a fibrillar collagen scaffold. The semi-interpenetrating materials were obtained by mixing HA with different molecular weight and a pepsin-solubilized collagen (atelocollagen) solution, and then by inducing collagen fibrillogenesis. Results indicate that molecular weight of HA significantly influences the mechanical properties of the semi-interpenetrating materials and more specifically stronger material results from the use of low-molecular-weight (LMW) HA. According to the dynamic mechanical data the composite collagen-LMW HA has a higher elastic modulus than collagen, whereas the opposite is true for the high-molecular-weight (HMW) HA. This result highlights the role of specific interactions that occur between collagen and HA during the gel formation in controlling the network mechanical stability. LMW HA may, probably, interact more strongly with collagen during the fibrillogenesis process than HMW HA due to the higher mobility of the chains and the weaker homologous interactions. Moreover, morphological observations showed that LMW HA is intimately interdispersed within the collagen network and completely coated the fibrils, which act as mechanical support.  相似文献   
13.
The aim of this study was to examine the feasibility of using a new low-modulus biodegradable thermoplastic elastomer for in vivo application as a stent cover. The new polymer, a thermoplastic elastomer, consists of a three-armed co-polymer of poly(lactide)acid (PLLA), poly(trimethylene carbonate) (PTMC) and poly(caprolactone) (PCL). A degradation study was performed in a buffer solution at 37°C for 4 and 6 weeks. The effect of degradation on mechanical properties was studied by stress-strain measurements and explained by using modulated DSC, GPC and mass measurements. A tapered block of PLLA and trimethylene carbonate connecting the crystalline outer part and the inner elastic part was highly susceptible to hydrolysis and caused rapid degradation and subsequent loss of mechanical properties. Random chain scission and homogenous hydrolysis resulted in a loss in mass and molecular weight. After 6 weeks of in vitro hydrolysis the molecular weight had decreased 54% and the elongation-at-break dropped from more than 300% to 90%. A medium free cell seeding study showed that endothelial cells adhered well to the polymeric material. An indicative animal study with the polymer acting as a stent cover showed very low levels of inflammation; however, pronounced neointima thickening was observed which was probably due to the premature failure of the material.  相似文献   
14.
Extruded collagen fibres have been shown to be a competitive biomaterial for tissue-engineering applications. Since different tissues are coming in different textures, as far as it is concerned their fibre diameter and consequently their mechanical properties, herein we aim to investigate the influence of the collagen concentration and the amount of NaCl on the properties of these fibres. Scanning electron microscopy study revealed that the substructure of the collagen fibres was the same, regardless of the treatment. The thermal properties were found to be independent of the collagen concentration or the amount of NaCl utilized (P > 0.05). An inversely proportional relationship between dry fibre diameter and stress at break was observed. Increasing the collagen concentration yielded fibres with significant higher diameter (P < 0.002), strain (P < 0.009) and force (P < 0.001) values, whilst the stress (P < 0.008) and modulus (P < 0.009) values were decreased. For the fabrication of fibres with reproducible properties, 20% NaCl was found to be the optimum. Overall, reconstituted collagen fibres were produced with properties similar to native or synthetic fibres to suit a wide range of tissue-engineering applications.  相似文献   
15.
We have designed a composite scaffold for potential use in tendon or ligament tissue engineering. The composite scaffold was made of a cellularized alginate gel that encapsulated a knitted structure. Our hypothesis was that the alginate would act as a cell carrier and deliver cells to the injury site while the knitted structure would provide mechanical strength to the composite construct. The mechanical behaviour and the degradation profile of the poly(lactic-co-glycolic acid) knitted scaffolds were evaluated. We found that our scaffolds had an elastic modulus of 750 MPa and that they lost their physical integrity within 7 weeks of in vitro incubation. Autologous rabbit mesenchymal stem cell seeded composite scaffolds were implanted in a 1-cm-long defect created in the rabbit tendon, and the biomechanical properties and the morphology of the regenerated tissues were evaluated after 13 weeks. The regenerated tendons presented higher normalized elastic modulus of (60%) when compared with naturally healed tendons (40%). The histological study showed a higher cell density and vascularization in the regenerated tendons.  相似文献   
16.
A novel method to fabricate highly interconnected porous hyaluronic acid (HA) scaffolds with open surface pore structures was developed by using embossed ice particulates as a template. HA sponges were cross-linked by water-soluble carbodiimide (WSC) and the optimal cross-linking condition was analyzed by infrared spectroscopy. Cross-linking with 50 mM WSC in a 90% (v/v) ethanol/water solvent mixture assured the highest degree of cross-linking and most stable structure and, therefore, was used to cross-link the HA sponges. Observation with a scanning electron microscope showed that the HA scaffolds had funnel-like porous structures. There were large, open pores on the top surfaces and inner bulk pores under the top surface of the funnel-like HA sponges. The inner bulk pores were interconnected with the large, top surface pores and extended into the whole sponge. The pore morphology and density of the large, top surface pores were dependent on the dimension and density of the ice particulates. The size of the inner bulk pores was dependent on the freezing temperature. The funnel-like pore structures of the HA sponges facilitated cell penetration into the inner pores of the sponges and resulted in homogenous cell distribution in the sponges.  相似文献   
17.
Poly(L-lactic acid)/hydroxyapatite hybrid nanofibrous scaffolds were prepared via electrospinning. The structure and morphology of the scaffolds were investigated using scanning electron microscopy, differential scanning calorimetry and Fourier transform infrared spectroscopy. The experimental results showed that the average diameter of hybrid nanofiber was similar to that of pure poly(L-lactic acid) fiber, but a new surface bonding (COO?) was formed in hybrid nanofiber which made the surface of the fiber coarse. The weight loss and water uptake of pure poly(L-lactic acid) scaffolds increased continuously and the viscosity-average molecular weight decreased in the phosphate buffer solution as time passed, while those of hybrid scaffolds were very much slowed down because the dissolving of hydroxyapatite particles acted as a physical barrier and blocked off the entry of water. The biocompatibility of the scaffold has been investigated by human osteosarcoma MG-63 cell culture on the scaffold. The preliminary results showed that cells were well adhered and proliferated better on the hybrid scaffolds than pure scaffolds.  相似文献   
18.
It has been recognized that a three-dimensional cell invasive scaffold that provides both topographical and chemical cues is desirable in regenerative tissue engineering to encourage cell attachment, migration, regrowth and ultimately tissue repair. Carbohydrate hydrogels are attractive for such applications because they are generally biocompatible and able to match the mechanical properties of most soft tissues. Although carbohydrate hydrogels have been previously modified with cell adhesive peptides and proteins, complicated hydrogel matrix activation was required prior to biomolecule coupling and, perhaps more importantly, the overall immobilization yield was low at ~1%. In this study, we report the photo-immobilization of a model biomolecule, ovalbumin (OVA), to agarose gel. We describe two methods of modification where the photoactive moiety is coupled to either the protein (i.e. OVA) or the matrix (i.e. agarose) prior to immobilization. We found that the photo-immobilization yield depends on the location of the photoactive moiety. Using photoactive OVA, 1.8% of the OVA initially incorporated into the agarose gel is immobilized; using photoactive agarose, 9.3% of the OVA initially mixed with the agarose is immobilized. The latter is a significant improvement over previous yields and may be useful in attaining our goal of immobilizing a biomolecule gradient for guided tissue regeneration.  相似文献   
19.
A polyurethane designed to be biodegradable via hydrolysis and enzyme-mediated chain cleavage, has been investigated for its use as a temporary scaffold in tissue-engineering applications. The phase-segregated nature of the polyurethane imparts elastomeric properties that are attractive for soft tissue engineering. This polyurethane has been electrospun in order to create scaffolds that incorporate several biomimetic features including small fiber diameter, large void volume, and an interconnected porous network. Material properties were evaluated via gel-permeation chromatography, differential scanning calorimetry and Raman spectroscopy before and after processing. Analysis by gel-permeation chromatography showed that the molecular weights were similar, indicating that the bulk of the polymer chains were not degraded during processing. Thermal analysis revealed that the glass transition temperature did not shift and Raman spectra of the bulk polyurethane film compared to the electrospun mat were identical, confirming that the conformation of the polymer was unaffected by the shear and electric field used in the electrospinning process. In addition, field emission scanning electron microscopy revealed that the morphology of the electrospun mats had a broad fiber diameter distribution, and mechanical analysis showed that the mats had an ultimate tensile stress of 1.33 MPa and ultimate tensile strain of 78.6%. The degradation profile was investigated in the presence of chymotrypsin. These results were compared to a previous study of thin films of this polyurethane, and it was found that the increase of surface area aided the surface-mediated erosion of the material. It is believed that an electrospun matrix of this biodegradable polyurethane shows promise for use in soft tissue engineering and regenerative medicine applications.  相似文献   
20.
Chitosan, as an example of natural macromolecular biomaterials, was used to fabricate highly porous chitosan scaffolds with microtubules having a tubular orientation structure using the unidirectional freeze-drying method. The porous structure of the scaffolds was characterized via scanning electron microscopy. The factors that affect the porous structure of the scaffolds, such as the concentration of chitosan solution and addition of glutaraldehyde as cross-linking agent, have been extensively studied in order to find a facile and efficient way to control the porosity, tubular morphology and orientation of the microtubules. The properties of the chitosan scaffolds, including water absorption ability, compressive strength, protein adsorption and in vitro enzymatic biodegradation in the presence of lysozyme, were also investigated. In vitro cell-culture results showed that the chitosan scaffold was non-toxic to cartilage cells and the cells could spread and grow well on the scaffolds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号