首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1333篇
  免费   154篇
  国内免费   45篇
耳鼻咽喉   9篇
妇产科学   3篇
基础医学   312篇
口腔科学   75篇
临床医学   174篇
内科学   117篇
皮肤病学   17篇
神经病学   17篇
特种医学   13篇
外科学   232篇
综合类   134篇
预防医学   4篇
眼科学   85篇
药学   282篇
中国医学   45篇
肿瘤学   13篇
  2024年   8篇
  2023年   31篇
  2022年   53篇
  2021年   85篇
  2020年   74篇
  2019年   69篇
  2018年   75篇
  2017年   84篇
  2016年   71篇
  2015年   68篇
  2014年   122篇
  2013年   165篇
  2012年   60篇
  2011年   80篇
  2010年   57篇
  2009年   66篇
  2008年   51篇
  2007年   43篇
  2006年   35篇
  2005年   25篇
  2004年   27篇
  2003年   27篇
  2002年   31篇
  2001年   37篇
  2000年   8篇
  1999年   11篇
  1998年   7篇
  1997年   1篇
  1996年   5篇
  1995年   6篇
  1994年   3篇
  1993年   7篇
  1992年   1篇
  1991年   6篇
  1990年   2篇
  1989年   2篇
  1988年   4篇
  1987年   3篇
  1986年   4篇
  1985年   5篇
  1984年   4篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
排序方式: 共有1532条查询结果,搜索用时 15 毫秒
91.
目的评估人工髓核材料聚乙烯醇水凝胶/聚乙烯纤维复合物的生物相容性。方法根据ISO10993-1标准,采用细胞毒性试验(琼脂扩散法)、皮内刺激试验、Ame's致突变试验、微核试验和体内植入(360天)试验对聚乙烯醇水凝胶/聚乙烯纤维复合物的生物相容性进行评估。结果聚乙烯醇水凝胶/聚乙烯纤维复合物的细胞毒性评分小于Ⅰ级,细胞生长无明显抑制现象,对皮内无刺激作用,Ames致突变试验为阴性,微核出现率为3.48‰,无致突变反应。体内植入符合植入材料生物学评价要求。结论聚乙烯醇水凝胶/聚乙烯纤维复合物具有良好的生物安全性,是一种无毒、对皮肤及肌肉、椎间隙无刺激作用的生物医用材料,在动物体内不引起排异反应,可应用于临床。  相似文献   
92.
In this paper the easy and reliable preparation of precise micropatterns on PDMS surfaces is described and the growth of HEK 293 cells on those patterns during culture over several days is examined. The first patterning approach described is based on soft-lithography and polyelectrolyte multilayer deposition. Two different soft-lithographic techniques are employed for creating surface patterns of PAH, PSS, untreated and oxidized PDMS. The growth behavior of HEK 293 cells is investigated on all the dual combinations of the four surfaces, and decreasing preference of the cells for the surfaces in the order PAH (–NH2) > ox-PDMS (–OH) >> PSS (–SO3 ) > PDMS (–CH3) is revealed. As the second patterning approach a method is introduced, which allows the deposition of gel droplets in a microarray format utilizing differences in the surface wettability. This concept is new and expected to be very useful for various applications. Finally, a speculative explanation for the different cell spreading behavior is provided considering the interplay between individual cell–surface interactions and a permanent cell tractional force.  相似文献   
93.
人工软骨材料——聚乙烯醇水凝胶的研制   总被引:10,自引:2,他引:10  
聚乙烯醇溶液于-20℃左右的温度下冷冻6-12h,室温下颌化1-2h,上述过程反复进行1-3次,然后对试样进行真空脱水处理,制得一种人工软骨材料-PVA水凝胶。  相似文献   
94.
Hydrogel as a carrier for drug delivery system has been developed, but it is hard to change the load and release of drugs through a simple way. Herein, the authors report a novel pH‐sensitive supramolecular binary hydrogel based on Phe‐Gly derivative gelator (LPPG) and 4,4′‐dipyridine disulfide (DPDS). Fourier transform infrared spectroscopy, circular dichroism, and 1H NMR confirm that the driving force for the coassembly process is intermolecular hydrogen bonds. The composite hydrogel can improve the dye adsorption capacity relative to LPPG hydrogel. Moreover, the controllable absorption of the dyes is studied by varying the pH and concentration of dye solutions. LPPG‐DPDS hydrogel can also release of entrapped dyes at physiological pH. The two‐component hydrogel should be a promising system for controllable drug delivery.

  相似文献   

95.
For practical adipose regeneration, the challenge is to dynamically deliver the key adipogenic insulin-like growth factors in hydrogels to induce adipogenesis. In order to achieve dynamic release, smart hydrogels to sense the change in the blood glucose concentration is required when glucose concentration increases. In this study, a heparin-based hydrogel has been developed for use in dynamic delivery of heparin nanospheres containing insulin-like growth factor. The gel scaffold was facilely prepared in physiological conditions by the formation of boronate-maltose ester cross-links between boronate and maltose groups of heparin derivatives. Due to its intrinsic glucose-sensitivity, the exposure of gel scaffold to glucose induces maltose functionalized nanospheres dissociation off hydrogel network and thereby could dynamically move into the microenvironment. The potential of the hydrogel as a cell scaffold was demonstrated by encapsulation of human adipose-derived stem cells (ASCs) within the gel matrix in vitro. Cell culture showed that this dynamic hydrogel could support survival and proliferation of ASCs. This biocompatible coupling chemistry has the advantage that it introduces no potentially cytotoxic groups into injectable gel scaffolds formed and can create a more biomimetic microenvironment for drug and cell delivery, rendering them more suitable for potential in vivo biomedical applications. All these results indicate that this biocompatible gel scaffold can render the formulation of a therapeutically effective platform for diabetes treatment and adipose regeneration.  相似文献   
96.
A series of injectable in situ cross-linking hyaluronic acid/carboxymethyl cellulose based hydrogels (HA/CMC) was prepared via disulfide bonds by the oxidation of dissolved oxygen. The results showed that HA/CMC hydrogels exhibited tunable gelling time, appropriate rheology properties, high swelling ratio, good stability, and sustained drug release ability. The gelling time of HA/CMC hydrogels ranged from 1.4 to 7.0 min, and the values of the storage modulus, complex shear modulus, dynamic viscosity, and yield stress of HA3/CMC3 hydrogel were about 5869 Pa, 5870 Pa, 587 Pa·s, and 1969 Pa, respectively. The degradation percentage of HA1/CMC1, HA2/CMC2, and HA3/CMC3 hydrogels were about 60, 49, and 41% after incubating 42 days, and the in vitro cumulative release percentage of BSA from HA1/CMC1, HA2/CMC2, and HA3/CMC3 drug-loaded hydrogels were about 99, 91, and 82% after 30 days. The series of injectable in situ cross-linking HA/CMC hydrogels exhibited good comprehensive performance, signifying that these hydrogels could be potentially used in the fields of short- and medium-term controlled drug release, cell encapsulation, regenerative medicine, and tissue engineering.  相似文献   
97.
We have been able to control hydrogel compliance and cell spreading in a three-dimensional (3D) cell-laden system (hydrogel) using soluble PEG-OH. This was accomplished by encapsulating smooth muscle cells (SMCs) into poly(ethylene glycol)-fibrinogen (PEG-fibrinogen or PF) with poly(ethylene glycol)-diol (PEG-OH) as a macromolecular leachant. The cell-encapsulating hydrogels were prepared with three concentrations of soluble PEG-OH having a mass of 10 kDa (1, 5 and 10% w/v). Rheology was used to measure the elastic (storage) component of the complex shear modulus of these hydrogels, while quantitative morphometrics were used to characterize SMC morphology. PF hydrogel with a higher amount of PEG-OH displayed a lower storage modulus and a higher elongated cell morphology of SMCs. Structural changes of PF hydrogels mainly owing to gelation-induced phase separation imparted by the soluble PEG-OH in 3D cell-laden hydrogels dramatically affected both the properties of the hydrogel network including the modulus as well as cell spreading.  相似文献   
98.
The development of efficient and biocompatible non-viral vectors for gene therapy remains a great challenge, and exploiting the properties of both nanoparticle carriers and cationic polymers is an attractive approach. In this work, we have developed gold nanoparticle (AuNP) polyamidoamine (PAMAM) conjugates for use as non-viral transfection agents. AuPAMAM conjugates were prepared by crosslinking PAMAM dendrimers to carboxylic-terminated AuNPs via EDC and sulfo-NHS chemistry. EDC and sulfo-NHS have been utilized widely and in numerous applications such as amino acid coupling; however, their use in the coupling of PAMAM dendrimers to AuNPs presents new challenges to form effective and stable constructs for delivery that have not yet been examined. Enhanced colloidal stability and DNA condensation ability was established by probing two critical synthetic parameters: the reaction rate of the PAMAM crosslinking step, and the amine to carboxyl ratio. Based on this work, increasing the amine to carboxyl ratio during conjugation of PAMAM onto AuNPs yielded the optimal vector with respect to colloidal stability and transfection efficiency in vitro. AuPAMAM conjugates present attractive candidates for non-viral gene delivery due to their commercial availability, ease of fabrication and scale-up, high yield, high transfection efficiency and low cytotoxicity.  相似文献   
99.
Tendon injuries are often associated with significant dysfunction and disability due to tendinous tissue's very limited self-repair capacity and propensity for scar formation. Dental-derived mesenchymal stem cells (MSCs) in combination with appropriate scaffold material present an alternative therapeutic option for tendon repair/regeneration that may be advantageous compared to other current treatment modalities. The MSC delivery vehicle is the principal determinant for successful implementation of MSC-mediated regenerative therapies. In the current study, a co-delivery system based on TGF-β3-loaded RGD-coupled alginate microspheres was developed for encapsulating periodontal ligament stem cells (PDLSCs) or gingival mesenchymal stem cells (GMSCs). The capacity of encapsulated dental MSCs to differentiate into tendon tissue was investigated in vitro and in vivo. Encapsulated dental-derived MSCs were transplanted subcutaneously into immunocompromised mice. Our results revealed that after 4 weeks of differentiation in vitro, PDLSCs and GMSCs as well as the positive control human bone marrow mesenchymal stem cells (hBMMSCs) exhibited high levels of mRNA expression for gene markers related to tendon regeneration (Scx, DCn, Tnmd, and Bgy) via qPCR measurement. In a corresponding in vivo animal model, ectopic neo-tendon regeneration was observed in subcutaneous transplanted MSC-alginate constructs, as confirmed by histological and immunohistochemical staining for protein markers specific for tendons. Interestingly, in our quantitative PCR and in vivo histomorphometric analyses, PDLSCs showed significantly greater capacity for tendon regeneration than GMSCs or hBMMSCs (P < 0.05). Altogether, these findings indicate that periodontal ligament and gingival tissues can be considered as suitable stem cell sources for tendon engineering. PDLSCs and GMSCs encapsulated in TGF-β3-loaded RGD-modified alginate microspheres are promising candidates for tendon regeneration.  相似文献   
100.
The ability to restore heart function by replacement of diseased myocardium is one of the great challenges in biomaterials and regenerative medicine. Brown adipose derived stem cells (BADSCs) present a new source of cardiomyocytes to regenerate the myocardium after infarction. In this study, we explored an injectable tissue engineering strategy to repair damaged myocardium, in which chitosan hydrogels were investigated as a carrier for BADSCs. In vitro, the effect and mechanism of chitosan components on the cardiac differentiation of BADSCs were investigated. In vivo, BADSCs carrying double-fusion reporter gene (firefly luciferase and monomeric red fluorescent protein (fluc-mRFP)) were transplanted into infarcted rat hearts with or without chitosan hydrogel. Multi-techniques were used to assess the effects of treatments. We observed that chitosan components significantly enhanced cardiac differentiation of BADSCs, which was assessed by percentages of cTnT+ cells and expression of cardiac-specific markers, including GATA-4, Nkx2.5, Myl7, Myh6, cTnI, and Cacna1a. Treatment with collagen synthesis inhibitors, cis-4-hydroxy-d-proline (CIS), significantly inhibited the chitosan-enhanced cardiac differentiation, indicating that the enhanced collagen synthesis by chitosan accounts for its promotive role in cardiac differentiation of BADSCs. Longitudinal in vivo bioluminescence imaging and histological staining revealed that chitosan enhanced the survival of engrafted BADSCs and significantly increased the differentiation rate of BADSCs into cardiomyocytes in vivo. Furthermore, BADSCs delivered by chitosan hydrogel prevented adverse matrix remodeling, increased angiogenesis, and preserved heart function. These results suggested that the injectable cardiac tissue engineering based on chitosan hydrogel and BADSCs is a useful strategy for myocardium regeneration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号