首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   16篇
  国内免费   1篇
儿科学   1篇
基础医学   40篇
临床医学   4篇
内科学   3篇
神经病学   65篇
特种医学   1篇
  2023年   2篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2019年   7篇
  2018年   4篇
  2017年   6篇
  2016年   3篇
  2015年   4篇
  2014年   9篇
  2013年   8篇
  2012年   7篇
  2011年   6篇
  2010年   3篇
  2009年   6篇
  2008年   4篇
  2007年   9篇
  2006年   7篇
  2005年   7篇
  2004年   3篇
  2003年   6篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
排序方式: 共有114条查询结果,搜索用时 15 毫秒
41.
Luo SS  Xi JY  Lu JH  Zhao CB  Zhu WH  Lin J  Wang Y  Ren HM  Yin B  Andoni UJ 《Muscle & nerve》2011,44(3):402-409
Background: Calpainopathy is comprised of a group of myopathies caused by deficiency in calcium‐activated, neutral protease (calpain‐3). In this study we identify calpainopathy in a cohort of Chinese patients with unclassified myopathy and analyze its clinical and pathological features. Methods: Sixty‐six muscle biopsies were selected for combined Western blotting of dysferlin and calpain‐3 after immunohistochemical staining. Clinical and pathological parameters of 15 confirmed calpainopathy cases were determined. Results: The diagnosis of calpainopathy in 15 Chinese patients was confirmed by Western blot analysis. Fourteen subjects had progressive proximal muscle weakness; 1 presented with bilateral distal muscle atrophy of the lower extremities. Scapular winging was observed in 12 patients (80%), and joint contractures were found in 10 others (66.7%). Histopathological studies showed a high prevalence of lobulated fibers (66.7%). Conclusions: Chinese patients with calpainopathy share some common clinical and pathological features with the reported characteristics of non‐Chinese patients. Muscle Nerve, 2011  相似文献   
42.
Autosomal recessive limb-girdle muscular dystrophies (LGMD2s) are a clinically and genetically heterogeneous group of disorders, characterized by progressive involvement of the proximal limb girdle muscles; the group includes at least 10 different genetic entities. The calpainopathies (LGMD2A), a subgroup of LGMD2s, are estimated to be the most common forms of LGMD2 in all populations so far investigated. LGMD2A is usually characterized by symmetrical and selective atrophy of pelvic, scapular and trunk muscles and a moderate to gross elevation of serum CK. However, the course is highly variable. It is caused by mutations in the CAPN3 gene, which encodes for the calpain-3 protein. Until now, 161 pathogenic mutations have been found in the CAPN3 gene. In the present study, through screening of 93 unrelated LGMD2 families, we identified 29 families with LGMD2A, 21 (22.6%) of which were identified as having CAPN3 gene mutations. We detected six novel (p.K211N, p.D230G, p.Y322H, p.R698S, p.Q738X, c.2257delGinsAA) and nine previously reported mutations (c.550delA, c.19_23del, c.1746-20C>G, p.R49H, p.R490Q, p.Y336N, p.A702V, p.Y537X, p.R541Q) in the CAPN3 gene. There may be a wide variety of mutations, but clustering of specific mutations (c.550delA: 40%, p.R490Q: 10%) could be used in the diagnostic scheme in Turkey. OMIM numbers: CAPN3 = OMIM: 114240, 253600 (LGMD2A), GenBank: AF209502.1  相似文献   
43.
肢带型肌营养不良 2 B型 (limb- girdle muscular dystrophy2 B,L GMD2 B)和 Miyoshi肌营养不良 (miyoshi m yopa-thy,MM)是由同一个基因突变引起的肌肉系统疾病。本文就这两种肌病的临床表现、基因定位、基因结构及编码产物等方面的研究进展作一介绍  相似文献   
44.
Dysferlinopathies belong to the heterogeneous group of autosomal recessive muscular dystrophies. Mutations in the gene encoding dysferlin (DYSF) lead to distinct phenotypes, mainly Limb Girdle Muscular Dystrophy type 2B (LGMD2B) and Miyoshi myopathy (MM). Here, we analysed the mutational data from the largest cohort described to date, a cohort of 134 patients, included based on clinical suspicion of primary dysferlinopathy and/or dysferlin protein deficiency identified on muscle biopsy samples. Data were compiled from 38 patients previously screened for mutations in our laboratory (Nguyen, et al., 2005; Nguyen, et al., 2007), and 96 supplementary patients screened for DYSF mutations using genomic DHPLC analysis, and subsequent sequencing of detected variants, in a routine diagnostic setting. In 89 (66%) out of 134 patients, molecular analysis identified two disease causing mutations, confirming the diagnosis of primary Dysferlinopathy on a genetic basis. Furthermore, one mutation was identified in 30 patients, without identification of a second deleterious allele. We are currently developing complementary analysis for patients in whom only one or no disease-causing allele could be identified using the genomic screening procedure. Altogether, 64 novel mutations have been identified in this cohort, which corresponds to approximately 25% of all DYSF mutations reported to date. The mutational spectrum of this cohort significantly shows a higher proportion of nonsense mutations, but a lower proportion of deleterious missense changes as compared to previous series. (c) 2008 Wiley-Liss, Inc.  相似文献   
45.
The limb-girdle muscular dystrophies (LGMDs) are a heterogenous group of diseases characterized by shoulder-girdle and pelvic muscle weakness and wasting. LGMD 2E is an autosomal recessively inherited form of the disease caused by mutations in the β-sarcoglycan (SGCB) gene located at 4q12. In this report, we describe a patient who demonstrates non-Mendelian inheritance of a homozygous missense mutation in SGCB resulting in disease expression. A combination of single-nucleotide polymorphism (SNP) array technology and microsatellite analysis revealed the occurrence of maternal uniparental disomy (UPD) for chromosome 4 in the patient. As a consequence of segmental isodisomy at 4q12, the patient inherited two identical SGCB alleles carrying a missense mutation predicted to result in abnormal protein function. SNP array technology proved to be an elegant means to determine the most probable mechanism of UPD formation in this case, and enabled us to determine the location of recombination events along chromosome 4. In our patient, UPD likely arose from a trisomy rescue event due to maternal meiotic non-disjunction that we speculate may have been caused by abnormal recombination at the pericentromeric region. Maternal UPD 4 is a rare finding, and to our knowledge this is the first reported case of UPD in association with LGMD.  相似文献   
46.
Limb girdle muscular dystrophy type 2I (LGMD2I) is due to mutations in the fukutin-related protein gene (FKRP), encoding a putative glycosyltransferase involved in alpha-dystroglycan processing. To further characterize the molecular pathogenesis of LGMD2I, we conducted a histological, immunohistochemical, ultrastructural and molecular analysis of ten muscle biopsies from patients with molecularly diagnosed LGMD2I. Hypoglycosylation of alpha-dystroglycan was observed in all FKRP-mutated patients. Muscle histopathology was consistent with either severe muscular dystrophy or myopathy with a mild inflammatory response consisting of up-regulation of class I major histocompatibility complex in skeletal muscle fibers and small foci of mononuclear cells. At the ultrastructural level, muscle fibers showed focal thinning of basal lamina and swollen endoplasmic reticulum cisternae with membrane re-arrangement. The pathways of the unfolded protein response (UPR; glucose-regulated protein 78 and CHOP) were significantly activated in LGMD2I muscle tissue. Our data suggest that the UPR response is activated in LGMD2I muscle biopsies, and the observed histopathological and ultrastructural alterations may be related to sarcoplasmic structures involved in FKRP and alpha-dystroglycan metabolism and malfunctioning.  相似文献   
47.
Limb girdle muscular dystrophy (LGMD) is common in the Hutterite population of North America. We previously identified a mutation in the TRIM32 gene in chromosome region 9q32, causing LGMD2H in approximately two-thirds of the 60 Hutterite LGMD patients studied to date. A genomewide scan was undertaken in five families who did not show linkage to the LGMD2H locus on chromosome 9. A second LGMD locus, LGMD2I, was identified in chromosome region 19q13.3, and the causative mutation was identified as c.826C>A (L276I), a missense mutation in the FKRP gene. A comparison of the clinical characteristics of the two LGMD patient groups in this population reveals some differences. LGMD2I patients generally have an earlier age at diagnosis, a more severe course, and higher serum creatine kinase (CK) levels. In addition, some of these patients show calf hypertrophy, cardiac symptoms, and severe reactions to general anesthesia. None of these features are present among LGMD2H patients. A single common haplotype surrounding the FKRP gene was identified in the Hutterite LGMD2I patients. An identical core haplotype was also identified in 19 other non-Hutterite LGMD2I patients from Europe, Canada, and Brazil. The occurrence of this mutation on a common core haplotype suggests that L276I is a founder mutation that is dispersed among populations of European origin.  相似文献   
48.
49.
Dysferlin encoding gene (DYS) is mutated in the autosomal recessive disorders Miyoshi myopathy, Limb Girdle Muscular Dystrophy type 2B (LGMD2B) and distal anterior compartment myopathy, causing dysferlin deficiency in muscle biopsy. Three ethnic clusters have previously been described in Dysferlinopathy: the Libyan Jewish population originating in the area of Tripoli, Italian and Spanish populations. We report another cluster of this muscular dystrophy in Israel among Jews of the Caucasus region. A genomic analysis of the dysferlin coding sequence performed in patients from this ethnic group, who demonstrated an absence of dysferlin expression in muscle biopsy, revealed a homozygous frameshift mutation of G deletion at codon 927 (2779delG) predicting a truncated protein and a complete loss of functional protein. The possible existence of a founder effect is strengthened by our finding of a 4% carrier frequency in this community. These findings are important for genetic counseling and also enable a molecular diagnosis of LGMD2B in Jews of the Caucasus region.  相似文献   
50.
Dysferlinopathy refers to a variety of autosomal recessive, skeletal muscle disorders due to the mutations of dysferlin-encoding gene, DYSF. It encompasses limb-girdle muscular dystrophy type 2B (LGMD2B), Miyoshi myopathy (MM), distal myopathy with anterior tibial onset (DMAT), isolated hyperCKemia, rigid spine syndrome and congenital muscular dystrophy. Herein, we report five Thai patients with distal myopathy due to dysferlinopathy including four MM and one DMAT patients. Muscle biopsy from one MM patient depicted numerous ring fibers which is an atypical finding in dysferlinopathy. Mutation analysis of DYSF revealed novel compound heterozygous mutations of p.Tyr309X and c.236 + 1G > T in two related MM patients, known homozygous mutations, p.Arg89X and p.Gln176X, in two MM patients and a heterozygous missense mutation, p.Arg555Trp, in a DMAT patient. Most of the previously reported DMAT patients were Hispanic. To the best of our knowledge, this is the first report of genetically confirmed patients with dysferlinopathy in Thailand.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号