首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   275篇
  免费   7篇
  国内免费   2篇
基础医学   35篇
临床医学   1篇
内科学   11篇
神经病学   164篇
外科学   2篇
综合类   3篇
预防医学   1篇
眼科学   1篇
药学   66篇
  2023年   1篇
  2022年   1篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   8篇
  2011年   10篇
  2010年   5篇
  2009年   16篇
  2008年   10篇
  2007年   15篇
  2006年   14篇
  2005年   18篇
  2004年   13篇
  2003年   12篇
  2002年   15篇
  2001年   10篇
  2000年   12篇
  1999年   11篇
  1998年   13篇
  1997年   10篇
  1996年   10篇
  1995年   12篇
  1994年   7篇
  1993年   4篇
  1992年   7篇
  1991年   9篇
  1990年   4篇
  1989年   6篇
  1988年   8篇
  1987年   4篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
排序方式: 共有284条查询结果,搜索用时 62 毫秒
191.
This study examined the acute actions of ethanol on recombinant rat GIuR6 kainate receptors expressed in Xenopus oocytes and HEK 293 cells. Electrophysiological recordings showed that co-application of ethanol with submaximal kainate concentrations resulted in similar inhibition of kainate-gated currents in both expression systems. Manipulation of intracellular phosphorylation pathways by intracellular dialysis with a solution without ATP and GTP did not modify the inhibitory effects of ethanol. Moreover, co-transfection of GIuR6 receptor subunits with PKA-α catalytic subunit or the calcium/ calmodulin-dependent protein kinase II (CamKII) catalytic fragment did not change the sensitivity of the receptor to ethanol. Treatment of Xenopus oocytes with specific inhibitors of PKC, PKA, CamKII, tyrosine kinases, and serine-threonine protein phosphatases did not affect the 100 mM ethanol-induced inhibition of GIuR6 receptor-mediated currents. Biochemical experiments with transiently transfected HEK 293 cells confirmed published reports that GIuR6 receptors are minimally phosphorylated under basal conditions in these cells and also revealed that acute ethanol did not increase GIuR6 phosphorylation. These results suggest that, under our experimental conditions, ethanol inhibits recombinant GIuR6 receptor function by a direct effect on the receptor rather than an indirect action via protein phosphorylation.  相似文献   
192.
The present study was designed to compare the protective consequences of activation of metabotropic glutamate receptors (mGluRs) onN-methyl-d-aspartate (NMDA)- and kainic acid (KA)-induced excitotoxicity in vivo. Pretreatment with the mGluR agonist 1SR,3RS-1-aminocyclo-pentane-1,3-dicarboxylic acid (tACPD) limited the anatomical and behavioral consequences of the intrastriatal administration of the NMDA agonist quinolinic acid (QA). In contrast, pretreatment with tACPD did not alter the effects of intrastriatal injection of KA.  相似文献   
193.
Microinjections of α1-adrenergic receptor agonists into the intermediolateral cell column of the spinal cord (IML) elicit sympathoexcitatory responses. This observation, together with the identification of projections of epinephrine-containing cells in the rostral ventrolateral medullary pressor area (VLPA) to the IML, has prompted speculation that epinephrine may mediate pressor responses to the stimulation of the VLPA. This hypothesis was tested in pentobarbital-anesthetized, artificially ventilated, male Wistar rats. A mesenteric arterial branch was cannulated for monitoring blood pressure. Pressor responses were elicited predominantly from T8–T10 by injections (1.7 nmol/20 nl) ofl-glutamate into the IML; maximum pressor responses(29.3 ± 4mmHg) were elicited from T9. Pressor responses were also elicited by injections of epinephrine into the IML at T9; maximum pressor effect(16.3 ± 1.2mmHg) was elicited by a dose of 0.05 pmol/20 nl. This effect of epinephrine at T9 was blocked by prior injections of prazosin (a selective α1-adrenergic receptor blocker; 0.125 pmol/20 nl) at the same site. Stimulation of the VLPA by unilateral microinjections of glutamate elicited pressor responses(56 ± 12mmHg). Bilateral injections of prazosin at T8–T10, in the dose ( (0.125 pmol) that blocked a maximally effective dose of epinephrine, did not block the pressor responses to subsequent injections of glutamate into the VLPA. On the other hand, bilateral microinjections of AP-7 (an NMDA receptor blocker; 1 nmol/20 nl), but not DNQX (10 pmol; a non-NMDA receptor blocker), into the IML at T8–T10 blocked the pressor effects of the subsequent injections of glutamate into the VLPA. At the dose used, AP-7 did not alter pressor responses to injections of kainic acid or AMPA into the IML at T9. These results suggest that under the experimental conditions in this study, the pressor responses following the stimulation of VLPA are not mediated by α1-adrenergic receptors in the IML. On the other hand, NMDA receptors in the IML do mediate these pressor responses.  相似文献   
194.
Intrahippocampal injections of colchicine selectively destroy dentate granule cells. Wet dog shaking elicited by systemic administration of kainic acid is eliminated by bilateral destruction of ventral dentate granule cells but unaffected by bilateral destruction of dorsal dentate granule cells. This implies that ventral dentate granule cells are essential for the generationn of kainic acid-induced wet dog shakes.  相似文献   
195.
The present study investigates the role of pharmacologic blockade of NMDA (N-methyl-d-aspartate) and non-NMDA receptors at deep prepiriform cortex (area tempestas, AT) in neuronal injury during prolonged seizures in rat. Status epilepticus was induced by intravenous kainate (15 mg/kg) and neuronal death was assessed in hippocampal CA3 sector 72 h following status epilepticus. Unilateral equimolar microinjections of 2-amino-7-phosphonoheptanoic acid (AP-7), an NMDA receptor antagonist, or 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline (NBQX), a non-NMDA receptor antagonist, into AT were given prior to kainate administration. Counts of surviving cells in CA3 ipsilateral to NBQX-injected AT were significantly greater than on the contralateral control-side, but no significant difference between the AP-7-injected and saline-injected side was found. These results indicate that neurotransmission via non-NMDA receptors is more important than that via NMDA receptors at AT in the genesis of neuronal injury in hippocampus during kainate-induced status epilepticus.  相似文献   
196.
Glutamate is the principal excitatory transmitter of the mammalian brain and plays a particularly important role in the physiology of the basal ganglia structures responsible for movement regulation. Using in situ hybridization with oligonucleotide probes, we examined the expression patterns of the five known kainate type glutamate receptor subunit genes, KA1, KA2 and GluR5–7, in the basal ganglia of adult and developing rat brain. In the adult rat, a highly organized and selective pattern of expression of the kainate subunits was observed in the basal ganglia and associated structures as well as in other regions of the brain. KA2 mRNA was abundant in the striatum, nucleus accumbens, subthalamic nucleus and substantia nigra pars compacta, and was present at lower levels in the globus pallidus and substantia nigra pars reticulata. Neither KA1 nor GluR5 expression was observed in the basal ganglia of adult rats, although these messages were present in other regions. GluR6 was highly expressed in the striatum and subthalamic nucleus and to a lesser extent in the substantia nigra pars reticulata, while no hybridization signal was detectable in the large, presumably dopaminergic neurons of the substantia nigra pars compacta. In contrast, GluR7 was strongly expressed in the substantia nigra pars compacta, was present at lower levels in the striatum, globus pallidus and substantia nigra pars reticulata, and was not detectable in the subthalamic nucleus. During postnatal development, expression of the kainate receptor subunits was characteristically highest on postnatal day 1 and declined to adult levels by day 20; however, in the globus pallidus we did observe the transient expression of KA1 and GluR5 between day 1 and day 10. These results demonstrate that the neuronal structures comprising the basal ganglia express a distinct combination of kainate receptor subunit genes, suggesting that the pharmacological properties of the resultant glutamate receptors are likely to be regionally specific. The organization of expression of these genes is established early in life, which is consistent with the important role they may play in establishing the functions of the motor system.  相似文献   
197.
The (2S,3R,4S) isomer of 2-(carboxycyclopropyl)glycines (CCG) (L-CCG-IV) is a potent NMDA-type agonist in the mammalian central nervous system. L-CCG-IV is a conformationally restricted glutamate analogue in which the cyclopropyl group fixes the glutamate chain, and closely mimics the folded conformation of L-glutamate. (6R)-Substituted L-CCG-IV, however, demonstrated pharmacological properties of non-NMDA type agonists in the newborn rat spinal motoneuron while (6S)-CCG derivatives showed similar properties to the parent compound, L-CCG-IV. In the dorsal root fiber of newborn rats, (6R)-methoxymethyl and benzyloxymethyl substituted L-CCG-IV caused kainate-like depolarization. The depolarizing potency of (6R)-benzyloxymethyl substituted L-CCG-IV was slightly lower than that of kainate, demonstrating a relatively high potency.  相似文献   
198.
A kainate binding protein (KBP) was studied in Rana pipiens inner ear using monoclonal and polyclonal antibodies against affinity purified KBP from frog brain. The KBP identified and analyzed in inner ear tissue homogenates, with one- and two-dimensional immunoblots, was similar to the affinity purified KBP and to the antibody-identified frog brain KBP. As brain KBP, inner ear KBP had 5 main components in the molecular weight dimension, centered at Mr = 48,000; however, inner ear KBP had a greater abundance of the higher molecular weight components. Light and electron microscopy observations showed KBP immunostaining at two locations: (1) in the dendrites of the eight nerve afferent fibers contacting sensory hair cells, with the postsynaptic density being more intensely stained; and (2) on the cytoplasmic membrane of fibroblasts present in the inner ear connective tissue which displayed intense immunostaining. The presence of kainate (KA) binding sites in the inner ear was assessed using in vitro receptor autoradiography. [3H]KA binding sites were found in connective tissue areas confirming the immunocytochemistry results. The postsynaptic localization of the KBP in afferent endings, strongly supports it as being a component of the KA receptor complex. However, its presence on fibroblasts situated in the inner ear connective tissue makes its function hypothetical. The dual presence of the KBP on non-neuronal cells as well as at postsynaptic membrane sites suggests the existence of a family of proteins involved in KA binding and KA receptors with a complex organization.  相似文献   
199.
Sleep-epilepsy interactions were investigated in a model of temporal lobe seizures induced in cats by intra-amygdaloid kainic acid (KA) microinjections. We found that limbic status epilepticus disrupted sleep for 2 or 3 days after injection. Sleep, in turn, modulated the frequency of interictal discharges. However, such modulation was variable depending on the time elapsed since KA injection. For this and other reasons (such as the occurrence of subclinical seizures during paradoxical sleep), we postulate a dual effect--facilitatory or inhibitory--of paradoxical sleep on limbic epilepsy. A role in seizure induction for bulbopontine structures is proposed on the basis of seizure precipitation during phasic paradoxical sleep. Propagated limbic seizures and paradoxical sleep without atonia displayed similar behavioral patterns. This fact and the possibility that a seizure may substitute for paradoxical sleep, lead us to think that limbic seizures and paradoxical sleep subserve similar functions. One of them might be the elimination of a potentially neurotoxic endogenous product.  相似文献   
200.
The addition ofL-glutamic acid (Glu) alone, both Glu and glycine (Gly) or Glu/Gly/spermidine (SPD) was effective in potentiating[3H]5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801) binding before equilibrium to an ion channel associated with theN-methyl-D-aspartate (NMDA) receptor complex in brain synaptic membranes extensively washed and treated with Triton X-100. The binding dependent on Glu almost linearly increased in proportion to decreasing proton concentrations at a pH range of 6.0 to 9.0 in external incubation medium, while a Gly-dependent portion of the binding increased with decreasing proton concentrations up to a pH of 7.5 with a plateau thereafter. In contrast, the SPD-dependent binding increased in proportion to decreasing proton concentrations up to a pH of 7.0 with a gradual decline thereafter. Similar profiles were also obtained with [3H]MK-801 binding at equilibrium, with an exception that significant binding of [3H]MK-801 was detected in the absence of any added agonists. The potency of SPD to potentiate [3H]MK-801 binding before equilibrium increased in proportion to decreasing proton concentrations, with those of both Glu and Gly being unchanged. In contrast, the ability of (+)MK-801 to displace [3H]MK-801 binding at equilibrium was not significantly affected by a decrement of external proton concentrations from pH 7.5 to pH 8.5 in the presence of Glu/Gly and Glu/Gly/SPD added. However, similar changes in external proton concentrations did not similarly affect binding of several radioligands for the NMDA and Gly domains on the receptor complex. Decreasing proton concentrations were effective in exponentially potentiating binding of [3H]SPD at a pH range of 6.0 to 9.0 without virtually altering [3H]D, L-α-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid binding. In addition, [3H]kainic acid binding markedly decreased with decreasing proton concentrations only in the presence of Ca2+ ions. These results suggest that protons negatively modulate neuronal responses mediated by the NMDA receptor ionophore complex through interference with opening mechanisms of the channel domain without disturbing association processes of the endogenous agonists with the respective recognition domains in rat brain. Moreover, possible modulation by protons of responses mediated by the kainate receptor in the presence of Ca2+ ions at concentrations that occur in vivo is also suggested.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号