首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8820篇
  免费   1572篇
  国内免费   529篇
耳鼻咽喉   22篇
儿科学   83篇
妇产科学   90篇
基础医学   2055篇
口腔科学   242篇
临床医学   504篇
内科学   1650篇
皮肤病学   108篇
神经病学   658篇
特种医学   74篇
外国民族医学   2篇
外科学   632篇
综合类   1043篇
现状与发展   2篇
预防医学   224篇
眼科学   128篇
药学   1190篇
  3篇
中国医学   774篇
肿瘤学   1437篇
  2024年   114篇
  2023年   395篇
  2022年   740篇
  2021年   937篇
  2020年   724篇
  2019年   543篇
  2018年   525篇
  2017年   510篇
  2016年   582篇
  2015年   661篇
  2014年   786篇
  2013年   827篇
  2012年   541篇
  2011年   535篇
  2010年   437篇
  2009年   461篇
  2008年   399篇
  2007年   293篇
  2006年   221篇
  2005年   165篇
  2004年   141篇
  2003年   96篇
  2002年   67篇
  2001年   56篇
  2000年   32篇
  1999年   34篇
  1998年   25篇
  1997年   17篇
  1996年   22篇
  1995年   9篇
  1994年   7篇
  1993年   3篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
  1982年   1篇
  1981年   1篇
  1977年   2篇
  1973年   1篇
  1971年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
目的探讨人参皂苷Rg3通过影响WNT/β-catenin信号通路中关键蛋白β-catenin从而阻断结肠癌细胞生长机制的研究。方法 MTT法检测不同浓度人参皂苷Rg3对人结肠癌细胞系SW480、HCT116细胞增殖的影响;流式细胞仪检测不同浓度人参皂苷Rg3对SW480、HCT116细胞凋亡及磷酸化β-catenin的影响;RT-PCR和Western blot法检测HCT116细胞中β-catenin及c-myc的表达。结果人参皂苷Rg3具有抑制SW480、HCT116细胞增殖和促进凋亡的能力。一定浓度人参皂苷Rg3能够降低β-catenin蛋白的磷酸化程度,下调β-catenin mRNA的表达,下调β-cetanin和c-myc蛋白的表达。结论人参皂苷Rg3具有一定的抗肿瘤活性,可有效抑制HCT116和SW480细胞生长,且这种作用可能是通过下调β-catenin磷酸化来实现的。  相似文献   
82.
Background and AimsTransplantation of mesenchymal stem cells (MSCs) derived from bone marrow (BM) is an alternative treatment of acute liver failure (ALF) mainly because of the resulting anti-inflammatory activity. It is not known how MSCs regulate local immune responses and liver regeneration. This study explored the effects of MSCs on hepatic macrophages and the Wnt signaling pathway in ALF.MethodsMSCs were isolated from BM aspirates of C57BL/6J mice, and transplanted in mice with ALF induced by D-galactosamine (D-Gal). The proliferation of hepatocytes was assayed by immunohistochemical (IHC) staining of Ki-67 and proliferating cell nuclear antigen (PCNA). The levels of key proteins in the Wnt signaling pathway were assayed by western blotting and cytokines were determined enzyme-linked immunosorbent assays (ELISAs). A macrophage polarization assay characterized the M1/M2 ratio. The potential role of interleukin-4 (IL-4) in the biological activity of MSCs was determined by silencing of IL-4.ResultsTransplantation of allogeneic MSCs significantly attenuated D-Gal-induced hepatic inflammation and promoted liver regeneration. MSC transplantation significantly promoted a phenotypic switch from proinflamatory M1 macrophages to anti-inflammatory M2 macrophages, leading to significant Wnt-3a induction and activation of the Wnt signaling pathway in mice with D-Gal-induced ALF. Of the paracrine factors secreted by MSCs (G-CSF, IL-6, IL-1 beta, IL-4, and IL-17A), IL-4 was specifically induced following transplantation in the ALF model mice. The silencing of IL-4 significantly abrogated the phenotypic switch to M2 macrophages and the protective effects of MSCs in both the ALF model mice and a co-culture model in an IL-4 dependent manner.ConclusionsIn vivo and in vitro studies showed that MSCs ameliorated ALF through an IL-4-dependent macrophage switch toward the M2 anti-inflammatory phenotype. The findings may have clinical implications in that overexpression of IL-4 may enhance the therapeutic effects of allogeneic MSC transplantation in the treatment of ALF.  相似文献   
83.
Acute liver failure (ALF) is a fatal clinical syndrome with no special drug. Recent evidence shows that modulation of macrophage to inhibit inflammation may be a promising strategy for ALF treatment. In this study we investigated the potential therapeutic effects of melittin, a major peptide component of bee venom both in mice model of ALF and in LPS-stimulated macrophages in vitro, and elucidated the underlying mechanisms. ALF was induced in mice by intraperitoneal injection of d-galactosamine/LPS. Then the mice were treated with melittin (2, 4, and 8 mg/kg, ip). We showed that melittin treatment markedly improved mortality, attenuated severe symptoms and signs, and alleviated hepatic inflammation in d-galactosamine/LPS-induced ALF mice with the optimal dose being 4 mg/kg. In addition, melittin within the effective doses did not cause significant in vivo toxicity. In LPS-stimulated RAW264.7 macrophages, melittin (0.7 μM) exerted anti-oxidation and anti-inflammation effects. We showed that LPS stimulation promoted aerobic glycolysis of macrophages through increasing glycolytic rate, upregulated the levels of Warburg effect-related enzymes and metabolites including lactate, LDHA, LDH, and GLUT-1, and activated Akt/mTOR/PKM2/HIF-1α signaling. Melittin treatment suppressed M2 isoform of pyruvate kinase (PKM2), thus disrupted the Warburg effect to alleviate inflammation. Molecular docking analysis confirmed that melittin targeted PKM2. In LPS-stimulated RAW264.7 macrophages, knockdown of PKM2 caused similar anti-inflammation effects as melittin did. In d-galactosamine/LPS-induced ALF mice, melittin treatment markedly decreased the expression levels of PKM2 and HIF-1α in liver. This work demonstrates that melittin inhibits macrophage activation-mediated inflammation via inhibition of aerobic glycolysis by targeting PKM2, which highlights a novel strategy of using melittin for ALF treatment.  相似文献   
84.
85.
Bladder cancer (BC) is a common type of cancer worldwide. Currently, the gold standard treatment is transurethral resection of bladder tumor (TUR-Bt) accompanied by intravesical Bacillus Calmette–Guérin (BCG) instillation for patients with middle-to-high-risk non-muscle-invasive bladder cancer (NMIBC). However, intravesical BCG therapy fails in almost 50% of high risk cases, leading to NMIBC persistence or early recurrence. In these patients, the gold standard remains radical cystectomy; however, it can seriously affect the patients’ quality of life. Moreover, for patients with muscle-invasive bladder cancer (MIBC), the 5-year survival rate after radical cystectomy with neoadjuvant chemotherapy remains low. Recent discoveries have paved the way for a new era in BC treatment. Metformin is the most widely used oral hypoglycemic drug in clinical practice, being mostly used in the treatment of type 2 diabetes. Epidemiological studies have demonstrated that metformin exerts a potentially positive effect on reducing the incidence and mortality of cancer; therefore, a increasing number of studies have investigated the potential anticancer effects of metformin and its mechanisms of action. This review aims to summarize the evidence for the role of metformin in bladder cancer therapy, including how metformin mediates bladder cancer cell apoptosis.  相似文献   
86.
Pannexin-1 (Panx1) is a large-pore ion and solute permeable channel highly expressed in the nervous system, where it subserves diverse processes, including neurite outgrowth, dendritic spine formation, and N-methyl D-aspartate (NMDA) receptor (NMDAR)-dependent plasticity. Moreover, Panx1 dysregulation contributes to neurological disorders, including neuropathic pain, epilepsy, and excitotoxicity. Despite progress in understanding physiological and pathological functions of Panx1, the mechanisms that regulate its activity, including its ion and solute permeability, remain poorly understood. In this study, we identify endoplasmic reticulum (ER)-resident stromal interaction molecules (STIM1/2), which are Ca2+ sensors that communicate events within the ER to plasma membrane channels, as binding and signaling partners of Panx1. We demonstrate that Panx1 is activated to its large-pore configuration in response to stimuli that recruit STIM1/2 and map the interaction interface to a hydrophobic region within the N terminus of Panx1. We further characterize a Panx1 N terminus–recognizing antibody as a function-blocking tool able to prevent large-pore Panx1 activation by STIM1/2. Using either the function-blocking antibody or re-expression of Panx1 deletion mutants in Panx1 knockout (KO) neurons, we show that STIM recruitment couples Ca2+ entry via NMDARs to Panx1 activation, thereby identifying a model of NMDAR-STIM-Panx1 signaling in neurons. Our study highlights a previously unrecognized and important role of the Panx1 N terminus in regulating channel activation and membrane localization. Considering past work demonstrating an intimate functional relation between NMDARs and Panx1, our study opens avenues for understanding activation modality and context-specific functions of Panx1, including functions linked to diverse STIM-regulated cellular responses.

Glutamatergic signaling plays a critical role in diverse processes linked to learning and memory formation. Ca2+ signals generated by the N-methyl D-aspartate (NMDA) subtype of glutamate receptors (NMDARs) are indispensable for several forms of synaptic plasticity, including long-term potentiation (LTP), a prototypic form of plasticity linked to memory formation (13). NMDAR-initiated Ca2+ signals (e.g., time course, amplitude, and spatial spread) are shaped by secondary events, including those engendered via the endoplasmic reticulum (ER) (4, 5). Ca2+ entry via NMDARs can promote Ca2+-induced Ca2+ release from ER stores by stimulating ryanodine (RyRs) (68) and/or IP3 receptors (IP3Rs) (9). In turn, NMDAR-initiated Ca2+ store depletion recruits ER-resident and Ca2+-sensing STIM proteins (10) to negatively regulate L-type voltage-gated Ca2+ channels (VGCCs) (13). This establishes the notion that Ca2+ entry via NMDARs can stimulate ER- and STIM-dependent cascades that regulate secondary routes of Ca2+ entry, thereby sculpting intracellular Ca2+ dynamics and in turn the cellular functions influenced by them. As part of a broader search to identify candidate Ca2+ channels able to respond to ER signaling dynamics, we found that Pannexin-1 (Panx1) can be activated through ER-based signaling following sarcoendoplasmic reticulum calcium adenosine triphosphatase (ATPase) (SERCA) pump inhibition by thapsigargin. This led us to consider the role of STIM1/2 as a candidate Panx1 activation mechanism.Panx1 is a large-pore nonselective ion and solute permeable channel with prominent central nervous system (CNS) expression (14, 15). Panx1 activation has been linked to pathophysiological disorders, such as excitotoxicity, stroke, migraine, chronic pain, and epilepsy (1618). However, Panx1 also mediates physiological processes in the CNS, including contributions to neural development (19, 20), spine formation (21, 22), and NMDAR-dependent synaptic plasticity (23, 24). In this context, there remains an important gap in understanding the mechanisms by which Panx1 can mediate such disparate physiological and pathological functions. Intriguingly, evidence suggests that Panx1 ion versus solute permeability may be mediated by distinct channel pore configurations (i.e., small anion vs. large solute permeable) recruited via distinct activation modalities (25). Thus, identifying novel activation mechanisms is fundamental to understanding context- and modality-specific channel function.Here, we uncover a mechanism by which Panx1 is activated in response to ER-initiated signaling, which we demonstrate is dependent on Panx1 interaction with ER-resident STIM1/2. STIM1/2 recruitment and activation stimulates large-pore Panx1 opening, evident on the basis of increased permeability to Ca2+ and the large inorganic ion N-methyl-D-glucamine (NMDG). We map the STIM1/2 binding interface to a hydrophobic region in the N terminus of Panx1, a region not previously linked to channel gating. Our detailed structure-function analysis reveals that the Panx1 N-terminal region is necessary for its STIM1/2 responsiveness, but not for its responsiveness to hypotonic stress, demonstrating that this region mediates modality-specific regulation of Panx1 function. Using reverse genetics, ectopic rescue with Panx1 N-terminal deletion mutants, as well as a function inhibiting antibody targeting the critical N-terminal region of Panx1 identified by us, we demonstrate that NMDARs activate Panx1 in hippocampal neurons in a manner contingent upon ER-initiated signaling and reliant upon STIM proteins. Collectively, our data reveal the molecular mechanism by which STIM1/2 activates Panx1 and establishes a previously unrecognized essential role of its N-terminal region in regulating the transition of Panx1 to its large-pore solute permeable state. Our work will benefit studies aimed at understanding diverse functions of Panx1, including those linked to NMDAR-dependent signaling, stimulated in a modality- and context-specific manner by STIM proteins.  相似文献   
87.
88.
This study aimed to explore clinical significance of interleukin-1 receptor-associated kinase 1 (IRAK1) in the diagnosis, prognosis, and targeted therapy of hepatocellular carcinoma. A systematic analysis based on the cancer genome atlas (TCGA) indicated that IRAK1 was highly expressed in 18 cancer types (p < 0.01) and may be a pan-cancer biomarker. In hepatocellular carcinoma, the alteration rate of IRAK1 was rather high (62.4%), in which mRNA high relative to normal predominated (58.9%). Higher expression was associated with shorter overall survival (p < 0.01). IRAK1 expression correlated positively with pathology stage and tumor grade (for the latter there was only a slight trend). Interestingly, it correlated positively with TP53 mutation (p < 0.001), suggesting a possible strategy for targeting TP53 via IRAK1. Immunohistochemistry experiments confirmed a higher positive rate of IRAK1 in carcinoma than in para-carcinoma tissues (χ2 = 18.006, p < 0.001). Higher tumor grade correlated with more strongly positive staining. Molecular docking revealed cryptotanshinone, matrine, and harmine as the best hit compounds with inhibition potential for IRAK1. Our findings suggest that IRAK1 may play biologically predictive roles in hepatocellular carcinoma. The suppression of IRAK1/NF-κB signaling via inhibition of IRAK1 by the hit compounds can be a potential strategy for the targeted therapy.  相似文献   
89.
BackgroundThe aim of this study was to investigate the inhibiting effect of transient receptor potential vanilloid 3 (TRPV3) on the proliferation and migration of colorectal cancer (CRC) cells and to explore the underlying mechanism.MethodsA microarray dataset from the publicly available Gene Expression Omnibus (GEO) database was used to investigate the prognostic value of TRPV3 in CRC. In addition, 100 CRC tissue samples were collected at our center to further validate its prognostic value at the protein level. Cell proliferation ability was detected by Cell Counting Kit-8 (CCK-8) assay, and cell migration ability was detected by transwell assay. Gene set variation analysis (GSVA) was performed to identify the potential pathways regulated by TRPV3.ResultsBased on the largest microarray dataset (GSE39582), low expression of TRPV3 was found to be significantly associated with poor prognosis in CRC patients, and this result was successfully validated at our cancer center. Functional experiments showed that knockdown of TRPV3 enhanced cell proliferation and migration, while enforced TRPV3 expression exhibited the opposite effect. GSEA based on public microarray data revealed that the mitogen-activated protein kinase (MAPK) signaling pathway was notably activated in patients with low expression of TRPV3. Further experiments in vivo confirmed that TRPV3 silencing promoted cell proliferation and migration by activating the MAPK signaling pathway.ConclusionsLow expression of TRPV3, which stimulates cell proliferation and migration by provoking the MAPK signaling pathway, indicated poor prognosis in CRC patients.  相似文献   
90.
Saturated free fatty acids (FFAs) such as palmitate in the circulation are known to cause endoplasmic reticulum (ER) stress and insulin resistance in peripheral tissues. In addition to protein kinase B (AKT) signaling, extracellular signal-regulated kinase (ERK) has been implicated in the development of insulin resistance. However, there are conflicting data regarding role of ERK signaling in ER stress-induced insulin resistance. In this study, we investigated the effects of ER stress on insulin resistance and ERK phosphorylation in Huh-7 cells and evaluated how oleate prevents palmitate-mediated ER stress. Treatment with insulin resulted in an increase of 38–45% in the uptake of glucose in control cells compared to non-insulin-treated control cells, along with an increase in the phosphorylation of AKT and ERK. We found that treatment with palmitate increased the expression of ER stress genes, including the splicing of X box binding protein 1 (XBP1) mRNA. At the same time, we observed a decrease in insulin-mediated uptake of glucose and ERK phosphorylation in Huh-7 cells, without any change in AKT phosphorylation. Supplementation of oleate along with palmitate mitigated the palmitate-induced ER stress but did not affect insulin-mediated glucose uptake or ERK phosphorylation. The findings of this study suggest that palmitate reduces insulin-mediated ERK phosphorylation in liver cells and this effect is independent of fatty-acid-induced ER stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号