BackgroundLINC00941 has been proved to be related to various tumors, but its relationship with laryngocarcinoma remains vague.MethodsLINC00941 expression in laryngocarcinoma tumor and laryngocarcinoma cells was determined by real time‐quantitative polymerase chain reaction (RT‐qPCR). Besides, the five‐year survival of laryngocarcinoma patients with different LINC00941 expression was analyzed with Kaplan–Meier survival analysis, and the clinical characteristics of laryngocarcinoma patients were also recorded. After transfection, cell viability, cell proliferation, apoptosis, cell cycle, migration, and invasion were detected by cell counting kit‐8 (CCK‐8), colony formation, flow cytometry, cell scratch, and Transwell assays, respectively. Glycolysis was assessed by the colorimetric method. Expressions of proliferation‐associated proteins, migration‐associated proteins, glycolysis‐associated proteins, and phosphatidylinositol 3‐kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signal pathway‐associated proteins were detected by Western blot.ResultsIn laryngocarcinoma tumor tissues and cells, LINC00941 was highly expressed. High expression of LINC00941 decreased the 5‐year survival of laryngocarcinoma patients, and it was positively related to lymph node metastasis and clinical stages. LINC00941 overexpression decreased apoptosis but promoted cell viability, proliferation, cell‐cycle progression, migration, and invasion, and glucose consumption and lactate production in laryngocarcinoma cells. Moreover, LINC00941 overexpression elevated expressions of Ki‐67, PCNA, MMP2, N‐Cadherin, HK2, PFKFB4, and PKM, activated the PI3K/AKT/mTOR signal pathway but reduced E‐Cadherin expression, while LINC00941 silencing had the opposite effects. PKM overexpression reversed the effects of LINC00941 silencing on cellular and glycolytic phenotypes.ConclusionLINC00941 promoted in vitro progression and glycolysis of laryngocarcinoma cells by upregulating PKM via activating the PI3K/AKT/mTOR signaling pathway. 相似文献
Introduction: Abnormal deposition of α-synuclein (ASN) is a hallmark and possible central mechanism of Parkinson’s disease and other synucleinopathies. Their therapy is currently hampered by the lack of early, screening-compatible diagnostic methods and efficient treatments.
Areas covered: Patent applications related to synucleinopathies obtained from Patentscope and Espacenet databases are described against the background of current knowledge regarding the regulatory mechanisms of ASN behavior including alternative splicing, post-translational modifications, molecular interactions, aggregation, degradation, and changes in localization.
Expert opinion: As the central pathological feature and possibly one of root causes in a number of neurodegenerative diseases, deregulation of ASN is a potentially optimal diagnostic and therapeutic target. Changes in total ASN may have diagnostic value, especially if non-invasive /peripheral tissue tests can be developed. Targeting the whole ASN pool for therapeutic purposes may be problematic, however. ASN mutations, truncation, and post-translational modifications have great potential value; therapeutic approaches selective towards aggregated or aggregation-prone ASN forms may lead to more successful and safe treatments. Numerous ASN interactions with signaling pathways, protein degradation and stress mechanisms widen its potential therapeutic significance dramatically. However, significant improvement in the basic knowledge on ASN is necessary to fully exploit these opportunities. 相似文献
BACKGROUNDHepatocellular carcinoma (HCC) exhibits high invasiveness and mortality rates, and the molecular mechanisms of HCC have gained increasing research interest. The abnormal DNA damage response has long been recognized as one of the important factors for tumor occurrence and development. Recent studies have shown the potential of the protein RING finger and WD repeat domain 3 (RFWD3) that positively regulates p53 stability in response to DNA damage as a therapeutic target in cancers. AIMTo investigate the relationship between HCC and RFWD3 in vitro and in vivo and explored the underlying molecular signalling transduction pathways. METHODSRFWD3 gene expression was analyzed in HCC tissues and adjacent normal tissues. Lentivirus was used to stably knockdown RFWD3 expression in HCC cell lines. After verifying the silencing efficiency, Celigo/cell cycle/apoptosis and MTT assays were used to evaluate cell proliferation and apoptosis. Subsequently, cell migration and invasion were assessed by wound healing and transwell assays. In addition, transduced cells were implanted subcutaneously and injected into the tail vein of nude mice to observe tumor growth and metastasis. Next, we used lentiviral-mediated rescue of RFWD3 shRNA to verify the phenotype. Finally, the microarray, ingenuity pathway analysis, and western blot analysis were used to analyze the regulatory network underlying HCC. RESULTSCompared with adjacent tissues, RFWD3 expression levels were significantly higher in clinical HCC tissues and correlated with tumor size and TNM stage (P < 0.05), which indicated a poor prognosis state. RFWD3 silencing in BEL-7404 and HCC-LM3 cells increased apoptosis, decreased growth, and inhibited the migration in shRNAi cells compared with those in shCtrl cells (P < 0.05). Furthermore, the in vitro results were supported by the findings of the in vivo experiments with the reduction of tumor cell invasion and migration. Moreover, the rescue of RFWD3 shRNAi resulted in the resumption of invasion and metastasis in HCC cell lines. Finally, gene expression profiling and subsequent experimental verification revealed that RFWD3 might influence the proliferation and metastasis of HCC via the Wnt/β-catenin signalling pathway.CONCLUSIONWe provide evidence for the expression and function of RFWD3 in HCC. RFWD3 affects the prognosis, proliferation, invasion, and metastasis of HCC by regulating the Wnt/β-catenin signalling pathway. 相似文献
In this study, we aimed to evaluate the effect of Nobiletin (NOB) on the placenta of Sprague–Dawley (SD) rats that had undergone reduced uterine perfusion pressure (RUPP) surgery and to evaluate the safety of NOB intervention during pregnancy. The results showed that NOB alleviated placental hypoxia, attenuated placental cell apoptosis, and inhibited placental damage in RUPP rats. No side effect of NOB intervention during pregnancy was observed. BeWo cell lines with P53 knockdown were then constructed using lentiviral transfection, and the P53 signaling pathway was found to be essential for NOB to reduce hypoxia-induced apoptosis of the BeWo cell lines. In summary, NOB attenuated hypoxia-induced placental damage by regulating the P53 signaling pathway, and those findings may contribute some insights into the role of NOB in placental development and the prevention of placental-related diseases. 相似文献
BackgroundmiR‐155‐5p is associated with autoimmune diseases. T helper 17 (Th17) cells, interleukin (IL)‐17, and suppressor of cytokines signaling 1 (SOCS1) have important roles in the pathogenesis of systemic sclerosis (SSc). The purpose of this study was to explore the role of miR‐155‐5p in the regulation of IL‐17 and SOCS1 expression in Th17 cells and the subsequent effect on SSc disease progression.MethodsTh17 cells were isolated from peripheral blood mononuclear cells of SSc patients and healthy controls (HCs). RT‐qPCR and western blotting were used to examine the expression patterns of miR‐155‐5p, IL‐17, and SOCS1. Luciferase reporter assays were performed to confirm SOCS1 as a target of miR‐155‐5p. RNA pull‐down assays were performed to detect the interaction of IL‐17 and SOCS1 with miR‐155‐5p. In situ hybridization was performed to analyze the co‐expression pattern of miR‐155‐5p and IL17A in Th17 cells.ResultsThe levels of Th17 cell‐derived miR‐155‐5p were significantly up‐regulated in SSc patients compared with HCs, and its levels were negatively correlated with SOCS1 levels. Meanwhile, miR‐155‐5p positively regulated IL‐17 expression levels in Th17 cells isolated from SSc patients as the disease progressed. Using pmirGLO vectors, SOCS1 was confirmed as a target of miR‐155‐5p. The binding status of IL‐17 and SOCS1 to miR‐155‐5p was related to SSc progression. An increase in the co‐localization of miR‐155‐5p and IL‐17 was associated with greater SSc progression.ConclusionsIL‐17 and SOCS1 expression modulated by Th17 cell‐derived miR‐155‐5p are critical for SSc progression, which may provide novel insights into the pathogenesis of SSc. 相似文献