首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   684篇
  免费   16篇
  国内免费   3篇
儿科学   1篇
妇产科学   1篇
基础医学   95篇
临床医学   29篇
内科学   135篇
皮肤病学   5篇
神经病学   73篇
外科学   8篇
综合类   8篇
预防医学   5篇
眼科学   3篇
药学   319篇
中国医学   1篇
肿瘤学   20篇
  2023年   5篇
  2022年   15篇
  2021年   27篇
  2020年   14篇
  2019年   17篇
  2018年   22篇
  2017年   12篇
  2016年   7篇
  2015年   19篇
  2014年   58篇
  2013年   76篇
  2012年   58篇
  2011年   58篇
  2010年   59篇
  2009年   42篇
  2008年   43篇
  2007年   30篇
  2006年   34篇
  2005年   30篇
  2004年   26篇
  2003年   27篇
  2002年   18篇
  2001年   3篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
排序方式: 共有703条查询结果,搜索用时 0 毫秒
41.
Olfactory receptors are G protein-coupled receptors that mediate olfactory chemosensation and serve as chemosensors in other tissues. We find that Olfr78, an olfactory receptor expressed in the kidney, responds to short chain fatty acids (SCFAs). Olfr78 is expressed in the renal juxtaglomerular apparatus, where it mediates renin secretion in response to SCFAs. In addition, both Olfr78 and G protein-coupled receptor 41 (Gpr41), another SCFA receptor, are expressed in smooth muscle cells of small resistance vessels. Propionate, a SCFA shown to induce vasodilation ex vivo, produces an acute hypotensive response in wild-type mice. This effect is differentially modulated by disruption of Olfr78 and Gpr41 expression. SCFAs are end products of fermentation by the gut microbiota and are absorbed into the circulation. Antibiotic treatment reduces the biomass of the gut microbiota and elevates blood pressure in Olfr78 knockout mice. We conclude that SCFAs produced by the gut microbiota modulate blood pressure via Olfr78 and Gpr41.  相似文献   
42.
43.
The opioid receptors are among the most highly studied members of the family of G protein-coupled receptors. As for many other members of this family, recent studies have indicated that they do not exist in isolation but are able to interact with a substantial range of other polypeptides. Such interactions can alter the effectiveness of agonist-mediated cell signalling, determine the signals generated, alter the intracellular trafficking routes of the receptors and potentially determine cellular localization by providing a scaffold to link the receptors to the cytoskeletal network. Although virtually all studies on these interactions to date have employed expression into simple heterologous cell lines, the availability of knock-out mouse lines and the capacity to knock-down levels of opioid receptor-interacting proteins using techniques such as siRNA suggest that information on the functional consequences of such protein-protein interactions in a physiological setting will soon be forthcoming.  相似文献   
44.
Rapid activation of JNK and p38 and their translocation to the cell nucleus by glucocorticoids, corticosterone (Cort), and bovine serum-conjugated corticosterone (Cort-BSA) were studied in primary cultured hippocampal cells by using immunoblotting and immunofluorescence confocal microscopy. The rapid activation occurred 5 min after stimulation and was maintained at plateau for as long as 2-4 hr; i.e., the response persisted for 2 hr after washing out the 15-min application of Cort-BSA. The activation occurred at a minimal concentration of 10(-9) M for Cort and 10(-8) M for Cort-BSA. GDPbetaS blocked the activation, but RU38486, a nuclear glucocorticoid receptor antagonist, could not block the activation, indicating the involvement of the membrane-delineated receptor in this reaction. The protein kinase C (PKC) inhibitor Go6976 blocked the response, whereas the protein kinase A inhibitor H89 could not, implying the involvement of PKC in the intracellular signal transduction pathway. The nongenomic nature of the responses and the transduction pathway and the significance of persistent action and biological significance are discussed.  相似文献   
45.
Wirz SA  Davis CN  Lu X  Zal T  Bartfai T 《Neuropeptides》2005,39(6):183-546
Galanin is a 29- to 30-aa-long neuropeptide affecting feeding, cognitive, and sexual behavior. It exerts its effects through galanin receptors 1, 2 and 3, which are all seven transmembrane domain G-protein coupled receptors (GPCRs). The GPCRs have been shown to function as monomers, homodimers, heterodimers and oligomers. In this study, we examined the extent of galanin receptor 1 (GalR1) dimerization and internalization in living CHO cells using fluorescence resonance energy transfer (FRET) and time lapse confocal imaging. Ratio imaging analysis and emission spectral analysis revealed substantial homodimerization of GalR1. In addition, internalization of GalR1 after 1h of agonist stimulation with the GalR1 agonist galanin (1-29) was observed with time lapse fluorescence imaging, whereas stimulation with the GalR2 specific agonist galanin (2-11) did not lead to internalization. Treatment of GalR1 transfected cells with the non-selective adenylyl cyclase activator forskolin influenced the rate of internalization when administered together with galanin (1-29). These results indicate that GalR1 can act as a dimer on the cell surface and that receptor desensitization and internalization was observed after stimulation with the agonist galanin (1-29). Western blots further confirm the FRET data that GalR1-XFP dimerizes and can be detected in the cell as a monomer or dimer using antibodies to XFP. Internalization and dimerization of GalR1 is shown, contributing to the regulation of galanergic signaling.  相似文献   
46.
A full-length cDNA encoding a 5-hydroxytryptamine (5-HT) receptor from the Southern cattle tick, Boophilus microplus, was isolated using a strategy based on sequence homology among G protein-coupled receptors. The deduced amino acid sequence revealed highest identity with Drosophila melanogaster 5HT-dro2A (Z11489, 50.8%) and 5HT-dro2B (Z11490, 49.5%) receptors. The receptor was transiently expressed in mammalian HEK293 cells, and Western blot analysis showed the expected 43.3 kDa band. In these cells, application of 5-HT (10 microm) inhibited forskolin-induced cAMP synthesis by 26%. The results indicate that the tick receptor is an invertebrate 5-HT1-like receptor that couples to Galphai protein.  相似文献   
47.
During Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) lytic infection, many virus-encoded signaling molecules (e.g., viral G protein-coupled receptor [vGPCR]) are produced that can induce host gene expression in transiently transfected cells, and roles for such induced host genes have been posited in KS pathogenesis. However, we have recently found that host gene expression is strongly inhibited by 10-12 h after lytic reactivation of KSHV, raising the question of whether and to what extent de novo host gene expression induced by viral signaling molecules can proceed during the lytic cycle. Here, we show by microarray analysis that expression of most vGPCR target genes is drastically curtailed by this host shutoff. However, rare cellular genes can escape the host shutoff and are potently up-regulated during lytic KSHV growth. Prominent among these is human interleukin-6, whose striking induction may contribute to the overexpression of this cytokine in several disease states linked to KSHV infection.  相似文献   
48.
Studies in heterologous systems have demonstrated that heterodimerisation of the two GABA(B) receptor subunits appears to be crucial for the trafficking and signalling of the receptor. Gene targeting of the GABA(B1) gene has demonstrated that the expression of GABA(B1) is essential for GABA(B) receptor function in the central nervous system (CNS). However, the contribution of the GABA(B2) subunit in the formation of native GABA(B) receptors is still unclear, in particular whether other proteins can substitute for this subunit. We have created a transgenic mouse in which the endogenous GABA(B2) gene has been mutated in order to express a C-terminally truncated version of the protein. As a result, the GABA(B1) subunit does not reach the cell surface and concomitantly both pre- and post-synaptic GABA(B) receptor functions are abolished. Taken together with previous gene deletion studies for the GABA(B1) subunit, this suggests that classical GABA(B) function in the brain is exclusively mediated by GABA(B1/2) heteromers.  相似文献   
49.
We have recently identified hyperforin, a lipophilic constituent of the herb Hypericum perforatum (St. John's wort), as a dual inhibitor of the proinflammatory enzymes cyclooxygenase-1 and 5-lipoxygenase. The aim of the present study was to further elucidate antiinflammatory properties and respective targets of hyperforin. We found that hyperforin inhibited the generation of reactive oxygen species (ROS) as well as the release of leukocyte elastase (degranulation) in human isolated polymorphonuclear leukocytes (PMNL), challenged by the G protein-coupled receptor (GPCR) ligand N-formyl-methionyl-leucyl-phenylalanine (fMLP) with an IC 50 approximately equal 0.3 microM. When PMNL were stimulated with phorbol-12-myristate-13-acetate (PMA) or ionomycin, hyperforin (up to 10 microM) failed to inhibit ROS production and elastase release, respectively. Moreover, hyperforin blocked receptor-mediated Ca(2+) mobilization ( IC 50 approximately equal 0.4 and 4 microM, respectively) in PMNL and monocytic cells, and caused a rapid decline of the intracellular Ca(2+) concentration in resting cells. In contrast, the Ca(2+) influx induced by ionomycin or thapsigargin was not suppressed. Comparative studies with the specific phospholipase C inhibitor U-73122 and hyperforin revealed similarities between both compounds. Thus, U-73122 and hyperforin blocked fMLP- and PAF-induced Ca(2+) mobilization, ROS formation, and elastase release, but failed to suppress these responses when cells were stimulated by PMA or ionomycin. Also, both compounds rapidly decreased basal Ca(2+) levels in resting cells and led to a rapid decline of the Ca(2+) elevations evoked by fMLP or PAF. Our data suggest that hyperforin targets component(s) within G protein signaling cascades that regulate Ca(2+) homeostasis, coupled to proinflammatory leukocyte functions.  相似文献   
50.
The role of Raf kinase inhibitor protein (RKIP) in health and disease   总被引:9,自引:0,他引:9  
Raf kinase inhibitor protein (RKIP) is a member of the phosphatidylethanolamine-binding protein (PEBP) family. RKIP plays a pivotal modulatory role in several protein kinase signaling cascades. RKIP binds inhibits Raf-1-mediated phosphorylation of MEK through binding to Raf-1. Protein kinase C (PKC) phosphorylates RKIP, resulting in release of Raf-1 and activation of MEK and ERK. The phosphorylated RKIP binds to and inhibits G-protein-coupled receptor kinase, resulting in sustained G-protein signaling. The regulatory role that RKIP has in cell signaling is reflected in its role in physiology and pathophysiology. RKIP is involved in neural development, cardiac function and spermatogenesis and appears to have serine protease activity. In addition to its roles in physiology, dysregulated RKIP expression has the potential to contribute to pathophysiological processes including Alzheimer's disease and diabetic nephropathy. RKIP has been shown to fit the criteria of being a metastasis suppressor gene, including having decreased expression in prostate cancer metastases and restoring RKIP expression in a prostate cancer cell line diminishes metastasis in a murine model. Clearly, RKIP has multiple molecular and cellular functions. In this review, RKIP's molecular roles in intracellular signaling, its physiological functions and its role in disease are described.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号