首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   4篇
  国内免费   3篇
耳鼻咽喉   4篇
基础医学   42篇
临床医学   11篇
内科学   8篇
神经病学   66篇
外科学   1篇
综合类   12篇
药学   24篇
中国医学   4篇
  2022年   3篇
  2021年   4篇
  2020年   3篇
  2019年   1篇
  2018年   6篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   7篇
  2011年   5篇
  2010年   7篇
  2009年   9篇
  2008年   11篇
  2007年   5篇
  2006年   7篇
  2005年   7篇
  2004年   10篇
  2003年   6篇
  2002年   3篇
  2001年   4篇
  2000年   7篇
  1999年   7篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1995年   7篇
  1994年   1篇
  1993年   2篇
  1992年   4篇
  1991年   4篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   4篇
  1985年   2篇
  1984年   2篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
排序方式: 共有172条查询结果,搜索用时 15 毫秒
81.
Although denervating injuries produce severe atrophic changes in mammalian skeletal muscle, a degree of functional restoration can be achieved through an intensive regime of electrical stimulation. An implantable stimulator was developed so that the long-term effects of different stimulation protocols could be compared in rabbits. The device, which is powered by two lithium thionyl chloride batteries, is small enough to be implanted in the peritoneal cavity. All stimulation parameters can be specified over a wide range, with a high degree of resolution; in addition, up to 16 periods of training (10–180 min) and rest (1–42 h) can be set in advance. The microcontroller-based device is programmed through a bidirectional radiofrequency link. Settings are entered via a user-friendly computer interface and annotated to create an individual study protocol for each animal. The stimulator has been reliable and stable in use. Proven technology and rigorous quality control has enabled 55 units to be implanted to date, for periods of up to 36 weeks, with only two device failures (at 15 and 29 weeks). Changes in the excitability of denervated skeletal muscles could be followed within individual animals. Chronaxie increased from 3.24±0.54 ms to 15.57±0.85 ms (n=55, p<0.0001) per phase in the 2 weeks following denervation.  相似文献   
82.
Purpose:   Clinically, perturbations in the semaphorin signaling system have been associated with autism and epilepsy. The semaphorins have been implicated in guidance, migration, differentiation, and synaptic plasticity of neurons. The semaphorin 3F (Sema3F) ligand and its receptor, neuropilin 2 (NPN2) are highly expressed within limbic areas. NPN2 signaling may intimately direct the apposition of presynaptic and postsynaptic locations, facilitating the development and maturity of hippocampal synaptic function. To further understand the role of NPN2 signaling in central nevous system (CNS) plasticity, structural and functional alterations were assessed in NPN2 deficient mice.
Methods:   In NPN2 deficient mice, we measured seizure susceptibility after kainic acid or pentylenetetrazol, neuronal excitability and synaptic throughput in slice preparations, principal and interneuron cell counts with immunocytochemical protocols, synaptosomal protein levels with immunoblots, and dendritic morphology with Golgi-staining.
Results:   NPN2 deficient mice had shorter seizure latencies, increased vulnerability to seizure-related death, were more likely to develop spontaneous recurrent seizure activity after chemical challenge, and had an increased slope on input/output curves. Principal cell counts were unchanged, but GABA, parvalbumin, and neuropeptide Y interneuron cell counts were significantly reduced. Synaptosomal NPN2 protein levels and total number of GABAergic synapses were decreased in a gene dose-dependent fashion. CA1 pyramidal cells showed reduced dendritic length and complexity, as well as an increased number of dendritic spines.
Discussion:   These data suggest the novel hypothesis that the Sema 3F signaling system's role in appropriate placement of subsets of hippocampal interneurons has critical downstream consequences for hippocampal function, resulting in a more seizure susceptible phenotype.  相似文献   
83.
Therapies aimed at depleting or blocking the migration of polymorphonuclear leukocytes (PMN or neutrophils) are partially successful in the treatment of neuroinflammatory conditions and in attenuating pain following peripheral nerve injury or subcutaneous inflammation. However, the functional effects of PMN on peripheral sensory neurons such as dorsal root ganglia (DRG) neurons are largely unknown. We hypothesized that PMN are detrimental to neuronal viability in culture and increase neuronal activity and excitability. We demonstrate that isolated peripheral PMN are initially in a relatively resting state but undergo internal oxidative burst and activation by an unknown mechanism within 10 min of co-culture with dissociated DRG cells. Co-culture for 24 h decreases neuronal count at a threshold<0.4:1 PMN:DRG cell ratio and increases the number of injured and apoptotic neurons. Within 3 min of PMN addition, fluorometric calcium imaging reveals intracellular calcium transients in small size (<25 microm diam) and large size (>25 microm diam) neurons, as well as in capsaicin-sensitive neurons. Furthermore, small size isolectin B4-labeled neurons undergo hyperexcitability manifested as decreased current threshold and increased firing frequency. Although co-culture of PMN and DRG cells does not perfectly model neuroinflammatory conditions in vivo, these findings suggest that activated PMN can potentially aggravate neuronal injury and cause functional changes to peripheral sensory neurons. Distinguishing the beneficial from the detrimental effects of PMN on neurons may aid in the development of more effective drug therapies for neurological disorders involving neuroinflammation, including painful neuropathies.  相似文献   
84.
Cognitive decline occurs during normal aging and is likely to be reflected in the neurophysiological properties of neural circuits with key roles in cognition, for example those of the limbic system. To identify candidate neurophysiological changes we used patch clamp methods to compare the intrinsic excitability properties of hippocampal CA1 pyramidal neurons of mature adult (8-10 month) and aged (22-24 month) mice. Resting potential, input resistance, and the "sag" observed on injection of hyperpolarizing current were not age-dependent. In contrast, the patterns of spike firing observed with depolarizing current injections demonstrated the presence of an age-related hypoexcitability. Action potential waveform analysis revealed that spike thresholds were approximately 3 mV more depolarized in aged animals. In line with this, voltage clamp recordings of Na(+) currents from nucleated macropatches exhibited an approximate 3 mV depolarizing shift in the voltage-dependence of activation gating. Inactivation curves, in contrast, were not different. These data indicate alterations in Na(+) channel activation gating contribute to neuronal hypoexcitability in aging, and therefore may be a factor in age-related cognitive decline.  相似文献   
85.
Paired-pulse techniques are a common tool to investigate the excitability of the cerebral cortex. Whereas in the motor system short interval intracortical inhibition assessed by paired-pulse transcranial magnetic stimulation clearly could be demonstrated to be generated within the motor cortex, the mechanism of paired-pulse inhibition measured over the somatosensory cortex after paired-pulse median nerve stimulation is less clear. The aim of this study was to further investigate the level of somatosensory processing where this paired-pulse inhibition is generated. We applied single and paired electrical stimulation of the median nerve with an interstimulus interval of 30 ms. Somatosensory evoked potentials were recorded over the brachial plexus, the cranial cervical medulla and the primary somatosensory cortex. We analyzed peak-to-peak amplitudes evoked by the second stimulus of paired-pulse stimulation after digital subtraction of a single pulse (A2s), and referred it to the first response before linear subtraction (A1). Paired-pulse inhibition was expressed as a ratio (A2s/A1) of the amplitudes of the second (A2s) and the first (A1) peaks. We found a significant reduction of A2s as compared to A1 over S1, but no significant difference between A1 and A2s over brachial plexus and cranial medulla. In addition, the cortical amplitude ratio A2s/A1 was significantly reduced compared to the amplitude ratios over cranial medulla and brachial plexus. These results suggest that the underlying inhibitory mechanisms are generated rostral to the brainstem nuclei, probably due to the activity of thalamic or intracortical inhibitory interneurons.  相似文献   
86.
Cortical hyperexcitability in migraine has been suggested to play a pivotal role in triggering migraine attacks, possibly via generation of spreading depression. Low levels of plasma, intracellular and brain magnesium as well as increased amplitudes of visual evoked potentials support this theory. More recent data on evoked and even related potentials, i. e. lack of habituation and low initial amplitudes during repetitive stimulation, however, may indicate reduced levels of cortical excitability. Transcranial magnetic stimulations of motor and visual cortices, a direct method to assess cortical excitability, yielded contradictory results. Lower or elevated motor threshold, amplitudes and/or phosphene prevalence or even no significant differences at all were demonstrated suggesting also cortical hypo- rather than hyperexcitability in migraine. Methodological differences, selection of subjects, and timing of investigations might partly explain these marked differences. Clinical and genetic heterogeneity of migraine, for instance via opposite influence on neuronal excitability caused by recently described ion-channel mutations, might provide further explanation. Received: 24 January 2000, Accepted in revised form: 2 October 2000  相似文献   
87.
88.
OBJECTIVES: Patients with primary palmar hyperhidrosis (PPH) might exhibit hyperexcitability of the reflex circuits involved in sweating. We hypothesized that this hyperexcitability could become evident in the study of the excitability recovery curve of the sympathetic sudomotor skin response (SSR). METHODS: In 10 patients with PPH and 10 healthy volunteers used as control subjects, we recorded the SSR in the palm of the right hand to pairs of median nerve electrical shocks separated by inter-stimuli intervals (ISIs) ranging from 0.5 to 3.5 s. The amplitude of the SSR generated by the second stimulus (SSR2) was expressed as a percentage of that generated by the first (SSR1), and compared between control subjects and patients for each ISI. RESULTS: None of the control subjects showed a recovery of the SSR for ISIs of 1.5 s or less. On the contrary, patients showed a statistically significant enhancement of the SSR excitability recovery curve, with onset of recovery at 1.5 s in 5 patients. Two patients showed a double peak response to single electrical stimulation and were not considered in the calculation of the SSR recovery curve. Mean excitability recovery percentages were larger in patients than in control subjects at ISIs of 2, 2.5 and 3 s. CONCLUSIONS: The enhancement of the SSR recovery curve in patients with PPH suggests hyperexcitability of the somatosympathetic polisynaptic pathway involved in sweating. This could partly underlie the pathophysiology of PPH.  相似文献   
89.
《Clinical neurophysiology》2019,130(5):655-665
ObjectiveThe study aim was to determine if use of illicit amphetamines or ecstasy is associated with abnormal excitability of the corticomotoneuronal pathway and manipulation of novel objects with the hand.MethodsThree groups of adults aged 18–50 years were investigated: individuals with a history of illicit amphetamine use, individuals with a history of ecstasy use but minimal use of other stimulants, and non-drug users. Transcranial magnetic stimulation was delivered to the motor cortex and the electromyographic response (motor evoked potential; MEP) was recorded from a contralateral hand muscle. Participants also gripped and lifted a novel experimental object consisting of two strain gauges and an accelerometer.ResultsResting MEP amplitude was larger in the amphetamine group (6M, 6F) than the non-drug and ecstasy groups (p < 0.005) in males but not females. Overestimation of grip force during manipulation of a novel object was observed in the amphetamine group (p = 0.020) but not the ecstasy group.ConclusionsHistory of illicit amphetamine use, in particular methamphetamine, is associated with abnormal motor cortical and/or corticomotoneuronal excitability in males and abnormal manipulation of novel objects in both males and females.SignificanceAbnormal excitability and hand function is evident months to years after cessation of illicit amphetamine use.  相似文献   
90.
Exposure to ethanol during development triggers neuronal cell death and this is thought to play a central role in the pathophysiology of fetal alcohol spectrum disorder (FASD). Studies suggest that ethanol-induced neurodegeneration during the period of synaptogenesis results from widespread potentiation of GABAA receptors and inhibition of NMDA receptors throughout the brain, with neocortical layer II being particularly sensitive. Here, we tested whether ethanol modulates the function of these receptors during this developmental period using patch-clamp electrophysiological and Ca2+ imaging techniques in acute slices from postnatal day 7-9 rats. We focused on pyramidal neurons in layer II of the parietal cortex (with layer III as a control). Ethanol (70 mM) increased spontaneous action potential-dependent GABA release in layer II (but not layer III) neurons without affecting postsynaptic GABAA receptors. Protein and mRNA expression for both the Cl importer, NKCC1, and the Cl exporter, KCC2, were detected in layer II/III neurons. Perforated-patch experiments demonstrated that ECl is shifted to the right of Em; activation of GABAA receptors with muscimol depolarized Em, decreased action potential firing, and minimally increased [Ca2+]i. However, the ethanol-induced increase of GABAergic transmission did not affect neuronal excitability. Ethanol had no effect on currents exogenously evoked by NMDA or AMPA receptor-mediated spontaneous excitatory postsynaptic currents. Acute application of ethanol in the absence of receptor antagonists minimally increased [Ca2+]i. These findings are inconsistent with the excessive inhibition model of ethanol-induced neurodegeneration, supporting the view that ethanol damages developing neurons via more complex mechanisms that vary among specific neuronal populations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号