首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   947篇
  免费   63篇
  国内免费   55篇
耳鼻咽喉   5篇
儿科学   34篇
妇产科学   35篇
基础医学   204篇
口腔科学   10篇
临床医学   29篇
内科学   186篇
皮肤病学   9篇
神经病学   134篇
特种医学   7篇
外科学   70篇
综合类   47篇
预防医学   43篇
眼科学   12篇
药学   85篇
中国医学   6篇
肿瘤学   149篇
  2024年   1篇
  2023年   20篇
  2022年   61篇
  2021年   74篇
  2020年   51篇
  2019年   47篇
  2018年   76篇
  2017年   57篇
  2016年   63篇
  2015年   75篇
  2014年   102篇
  2013年   90篇
  2012年   58篇
  2011年   98篇
  2010年   44篇
  2009年   42篇
  2008年   31篇
  2007年   25篇
  2006年   31篇
  2005年   5篇
  2004年   10篇
  2003年   3篇
  2000年   1篇
排序方式: 共有1065条查询结果,搜索用时 15 毫秒
991.
992.
DNA methylation at the fifth position of cytosines (5mC) represents a major epigenetic modification in mammals. The recent discovery of 5-hydroxymethylcytosine (5hmC), resulting from 5mC oxidation, is redefining our view of the epigenome, as multiple studies indicate that 5hmC is not simply an intermediate of DNA demethylation, but a genuine epigenetic mark that may play an important functional role in gene regulation.Currently, the availability of platforms that discriminates between the presence of 5mC and 5hmC at single-base resolution is starting to shed light on the functions of 5hmC. In this review, we provide an overview of the genomic distribution of 5hmC, and examine recent findings on the role of this mark and the potential consequences of its misregulation during three fundamental biological processes: cell differentiation, cancer and aging.  相似文献   
993.
994.
Human ageing is associated with a gradual decline in the physiological functions of the body at multiple levels and it is a key risk factor for many diseases, including cancer. Ageing process is intimately related to widespread cellular senescence, characterised by an irreversible loss of proliferative capacity and altered functioning associated with telomere attrition, accumulation of DNA damage and compromised mitochondrial and metabolic function. Tumour and senescent cells may be generated in response to the same stimuli, where either cellular senescence or transformation would constitute two opposite outcomes of the same degenerative process. This paper aims to review the state of knowledge on the biomolecular relationship between cellular senescence, ageing and cancer. Importantly, many of the cell signalling pathways that are found to be altered during both cellular senescence and tumourigenesis are regulated through shared epigenetic mechanisms and, therefore, they are potentially reversible. MicroRNAs are emerging as pivotal players linking ageing and cancer. These small RNA molecules have generated great interest from the point of view of future clinical therapy for cancer because successful experimental results have been obtained in animal models. Micro-RNA therapies for cancer are already being tested in clinical phase trials. These findings have potential importance in cancer treatment in aged people although further research-based knowledge is needed to convert them into an effective molecular therapies for cancer linked to ageing.  相似文献   
995.
《Seminars in immunology》2016,28(5):425-430
The classical view that only adaptive immunity can build immunological memory has recently been challenged. Both in organisms lacking adaptive immunity as well as in mammals, the innate immune system can adapt to mount an increased resistance to reinfection, a de facto innate immune memory termed trained immunity. Recent studies have revealed that rewiring of cellular metabolism induced by different immunological signals is a crucial step for determining the epigenetic changes underlying trained immunity. Processes such as a shift of glucose metabolism from oxidative phosphorylation to aerobic glycolysis, increased glutamine metabolism and cholesterol synthesis, play a crucial role in these processes. The discovery of trained immunity opens the door for the design of novel generations of vaccines, for new therapeutic strategies for the treatment of immune deficiency states, and for modulation of exaggerated inflammation in autoinflammatory diseases.  相似文献   
996.
The endocrine disrupting chemical bisphenol A (BPA) is widely used in the production of polycarbonate plastics and epoxy resins. The use of BPA-containing products in daily life makes exposure ubiquitous, and the potential human health risks of this chemical are a major public health concern. Although numerous in vitro and in vivo studies have been published on the effects of BPA on biological systems, there is controversy as to whether ordinary levels of exposure can have adverse effects in humans. However, the increasing incidence of developmental disorders is of concern, and accumulating evidence indicates that BPA has detrimental effects on neurological development. Other bisphenol analogues, used as substitutes for BPA, are also suspected of having a broad range of biological actions. The objective of this review is to summarize our current understanding of the neurobiological effects of BPA and its analogues, and to discuss preventive strategies from a public health perspective.  相似文献   
997.
《Immunobiology》2017,222(10):937-943
The alarming rise of obesity and type 2 diabetes (T2D) has put a tremendous strain on global healthcare systems. Over the past decade extensive research has focused on the role of macrophages as key mediators of inflammation in T2D. The inflammatory environment in the obese adipose tissue and pancreatic β-cell islets creates and perpetuates imbalanced inflammatory macrophage activation. Consequences of this chronic low-grade inflammation include insulin resistance in the adipose tissue and pancreatic β-cell dysfunction. Recently, the emerging field of epigenetics has provided new insights into the pathogenesis of T2D, while also affording potential new opportunities for treatment. In macrophages, epigenetic mechanisms are increasingly being recognized as crucial controllers of their phenotype. Here, we first describe the role of macrophages in T2D. Then we elaborate on epigenetic mechanisms that regulate macrophage activation, thereby focusing on T2D. Next, we highlight how diabetic conditions such as hyperlipidemia and hyperglycemia could induce epigenetic changes that promote an inflammatory macrophage phenotype. In conclusion we discuss possible therapeutic interventions by targeting macrophage epigenetics and speculate on future research directions.  相似文献   
998.
Abstract

Background: Pattern recognition receptors form an essential part of the host defenses against pathogens, in particular in the intestinal epithelium. However, despite their importance relatively little is understood about the regulation of their expression. Increasing evidence suggesting that epigenetic mechanisms such as DNA methylation and histone acetylation have substantial effects on gene expression and regulation. Epigenetic modifying drugs are now used to treat certain cancers but not a lot is known about their effects on the innate immune system. Thus, we set out to examine the role of such drugs in the expression and function of Toll-like receptors.

Methods: Using the HCT116 epithelial cell line, we determined the effects of genetic knockout of the DNA methyltransferases enzymes (DNMTs), as well as pharmacological inhibition of the DNMTs and histone deacetylase complexes (HDACs) on TLR responses to their ligands.

Results: Our initial results showed that anti-viral responses were affected by changes in the epigenome, with TLR3 responses showing the most dramatic differences. We determined that inhibition of methylation and acetylation inhibited poly I:C induced increases in signaling protein phosphorylation, as well as increases in cytokine mRNA expression and release. We also observed that treatment with epigenetic modifying drugs were leading to large increases in IRF8 expression, a protein that is a known negative regulator of TLR3. When we overexpressed IRF8 in our WT cells we noticed inhibition of poly I:C responses.

Conclusion: This research highlighted the potential immunoregulatory role of epigenetic modifying drugs specifically in response to viral stimulation.  相似文献   
999.
Why exactly some individuals develop autoimmune disorders remains unclear. The broadly accepted paradigm is that genetic susceptibility results in some break in immunological tolerance, may enhance the availability of autoantigens, and may enhance inflammatory responses. Some environmental insults that occur on this background of susceptibility may then contribute to autoimmunity. In this review we discuss some aspects related to inhibitory signaling and rare genetic variants, as well as additional factors that might contribute to autoimmunity including the possible role of clonal somatic mutations, the role of epigenetic events and the contribution of the intestinal microbiome. Genetic susceptibility alleles generally contribute to the loss of immunological tolerance, the increased availability of autoantigens, or an increase in inflammation. Apart from common genetic variants, rare loss-of-function genetic variants may also contribute to the pathogenesis of autoimmunity. Studies of an inhibitory signaling pathway in B cells helped identify a negative regulatory enzyme called sialic acid acetyl esterase. The study of rare genetic variants of this enzyme provides an illustrative example showing the importance of detailed functional analyses of variant alleles and the need to exclude functionally normal common or rare genetic variants from analysis. It has also become clear that pathways that are functionally impacted by either common or rare defective variants can also be more significantly compromised by gene expression changes that may result from epigenetic alterations. Another important and evolving area that has been discussed relates to the role of the intestinal microbiome in influencing helper T cell polarization and the development of autoimmunity.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号