首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   3篇
基础医学   24篇
临床医学   1篇
内科学   3篇
神经病学   54篇
外科学   4篇
综合类   1篇
眼科学   1篇
药学   16篇
  2021年   2篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2012年   8篇
  2011年   6篇
  2010年   6篇
  2009年   5篇
  2008年   11篇
  2007年   11篇
  2006年   11篇
  2005年   3篇
  2004年   2篇
  2003年   6篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1998年   2篇
  1997年   3篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1988年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
排序方式: 共有104条查询结果,搜索用时 140 毫秒
101.
Although substantia nigra reticulata (SNR) neurons fire bursts of action potentials during normal movement, excessive burst firing correlates with symptoms of Parkinson's disease. A major excitatory output from the subthalamic nucleus (STN) to the SNR is thought to provide the synaptic impetus for burst firing in SNR neurons. Using patch pipettes to record from SNR neurons in rat brain slices, we found that a single electrical stimulus delivered to the STN evokes a burst of action potentials. Under voltage-clamp conditions, STN stimulation evokes a complex EPSC that is comprised of an initial monosynaptic EPSC followed by a series of late EPSCs superimposed on a long-lasting inward current. Using varied stimulation frequencies, we found that the initial EPSC was significantly reduced or abolished after 2 s of 50-100 Hz STN stimulation. However, only 4 s of 1 Hz stimulation was required to abolish the late component of the complex EPSC. We suggest that differential effects of repetitive STN stimulation on early and late components of complex EPSCs may help explain the frequency-dependent effects of deep brain stimulation of the STN that is used in the treatment of Parkinson's disease.  相似文献   
102.
Recent findings proposed that the cerebellum and the striatum, key structures in motor control, are more interconnected than commonly believed, and that the cerebellum may influence striatal activity. In the present study, the possible changes of synaptic transmission in the striatum of hemicerebellectomized rats have been investigated. Neurophysiological recordings showed a significant facilitation of glutamate transmission in the contralateral striatum occurring early following hemicerebellectomy. This process of synaptic adaptation appears to be relevant for the compensation of cerebellar deficits. Accordingly, pharmacological blockade of glutamate N-methyl-d-aspartate (NMDA) receptors with MK-801 prevented the rearrangement of excitatory synapses in the striatum and interfered with the recovery from motor disturbances in rats with cerebellar lesions. Hemicerebellectomy also perturbed gamma-aminobutyric acid (GABA) transmission in contralateral but not ipsilateral striatum. The present findings advance the role of striatal excitatory transmission in the compensation of cerebellar deficits, providing support to the notion that adaptations of striatal function exert a role in the recovery of cerebellar symptoms.  相似文献   
103.
Lee CY  Fu WM  Chen CC  Su MJ  Liou HH 《Epilepsia》2008,49(5):888-897
PURPOSE: The dentate gyrus (DG) is a gateway that regulates seizure activity in the hippocampus. We investigated the site of action of lamotrigine (LTG), an effective anticonvulsant, in the regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and N-methyl-D-aspartic acid (NMDA) receptor-mediated excitatory synaptic transmission on DG. METHODS: Evoked AMPA and NMDA receptor-mediated excitatory postsynaptic currents (eEPSCampa and eEPSCnmda) were recorded by whole-cell patch-clamp recording from the granule cells of DG in brain slice preparation of young Wistar rats (60-120 g). Exogenously applied AMPA and NMDA-induced currents and AMPA receptor-mediated miniature EPSC (mEPSCampa) were recorded in the presence of specific antagonists. RESULTS: LTG inhibited both eEPSCampa and eEPSCnmda, and had no effect on exogenously applied NMDA-induced current indicating LTG inhibited glutamate release. Previous studies demonstrated that alteration in glutamate concentration in synaptic cleft causes parallel changes of eEPSCampa and eEPSCnmda. Our results showed that LTG inhibited eEPSCampa significantly more than eEPSCnmda (p < 0.05), suggesting that LTG may also have blocked the postsynaptic AMPA receptor. The hypothesis is further supported by the facts that; (1) LTG (30-100 microM) inhibited direct exogenously applied AMPA-induced currents (to 90%), (2) LTG significantly reduced the amplitude, but not the frequency of mEPSCampa and asynchronous (EPSC), and (3) LTG-induced reduction of eEPSCampa was not associated with a modification of the paired-pulse ratio. To sum up, LTG exerts a postsynaptic inhibitory mechanism on the AMPA receptor. CONCLUSIONS: Our results demonstrate that LTG suppresses postsynaptic AMPA receptors and reduces glutamate release in granule cells of DG. The postsynaptic effect can be one of the underlying mechanisms of LTG's anticonvulsant action.  相似文献   
104.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号