首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163179篇
  免费   14512篇
  国内免费   3400篇
耳鼻咽喉   1439篇
儿科学   3706篇
妇产科学   2678篇
基础医学   11586篇
口腔科学   3389篇
临床医学   33088篇
内科学   22959篇
皮肤病学   1472篇
神经病学   8131篇
特种医学   2898篇
外国民族医学   1篇
外科学   13847篇
综合类   20918篇
现状与发展   4篇
一般理论   67篇
预防医学   26141篇
眼科学   1225篇
药学   14530篇
  226篇
中国医学   7194篇
肿瘤学   5592篇
  2024年   616篇
  2023年   4316篇
  2022年   6632篇
  2021年   8604篇
  2020年   8178篇
  2019年   7500篇
  2018年   7119篇
  2017年   6889篇
  2016年   6605篇
  2015年   6599篇
  2014年   12375篇
  2013年   13270篇
  2012年   10089篇
  2011年   10802篇
  2010年   8199篇
  2009年   8024篇
  2008年   7491篇
  2007年   7575篇
  2006年   6365篇
  2005年   5420篇
  2004年   4354篇
  2003年   3551篇
  2002年   2673篇
  2001年   2417篇
  2000年   2165篇
  1999年   1880篇
  1998年   1479篇
  1997年   1247篇
  1996年   1129篇
  1995年   943篇
  1994年   891篇
  1993年   732篇
  1992年   629篇
  1991年   522篇
  1990年   535篇
  1989年   432篇
  1988年   363篇
  1987年   340篇
  1986年   265篇
  1985年   339篇
  1984年   288篇
  1983年   182篇
  1982年   193篇
  1981年   159篇
  1980年   171篇
  1979年   130篇
  1978年   89篇
  1977年   87篇
  1976年   72篇
  1974年   43篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
41.
42.
43.
44.
目的 前房注射卡波姆建立大鼠高眼压模型,观察卡波姆升眼压效果及对大鼠眼前节和视网膜的影响。方法 随机选取30只SD大鼠,注射前3 d早晚测量基线眼压。右眼定为实验眼,左眼定为对照眼,右眼放出房水后将30 μL的5 g·L-1卡波姆混悬液注入前房,每日早10时、晚22时在大鼠清醒状态下测量眼压。每周进行双眼眼前节照相并对比。4周末处死26只大鼠(另4只持续观察眼压变化至注射后9周)并取双眼眼球行HE染色,观察实验眼与对照眼视网膜形态,对比视网膜厚度及房角形态。结果 注射前,实验眼白天和夜间眼压分别为(11.10±0.90)mmHg(1 kPa=7.5 mmHg)和(11.92±1.07)mmHg,对照眼分别为(11.22±1.07)mmHg和(11.76±1.08)mmHg;实验眼与对照眼相比,白天、夜间眼压差异均无统计学意义(均为 P>0.05);白天与夜间眼压相比,实验眼、对照眼差异均有统计学意义(均为P<0.05)。卡波姆在前房中呈现出弥散型和沉积型两种存在方式,弥散型和沉积型大鼠1周内眼压分别为(17.83±3.54)mmHg和(13.00±1.55)mmHg,两者相比差异具有统计学意义(P<0.05)。注射后第1天至第19天,实验眼与对照眼白天眼压相比差异均具有统计学意义(均为P<0.05);注射后第1天至第27天,实验眼与对照眼夜间眼压相比差异均具有统计学意义(均为P<0.05)。实验眼视网膜形态发生改变,注射后4周视网膜厚度为(254.70±21.80)μm,与对照眼的(346.73±24.63)μm相比,差异有统计学意义(P=0.00)。实验眼前房充满卡波姆及虹膜的混合成分,紧贴角膜内皮并延伸至房角,堵塞小梁网结构,正常虹膜形态消失;对照眼房角形态正常。结论 前房注射卡波姆建立大鼠高眼压模型,可维持高眼压4周以上,昼夜眼压差异较为明显,夜间眼压较白天更高,4周后视网膜出现高眼压损伤后的表现。  相似文献   
45.
BackgroundCoronary artery bypass grafting (CABG) improves survival in patients with heart failure and severely reduced left ventricular systolic function (LVEF). Limited data exist regarding adverse cardiovascular event rates after CABG in patients with heart failure with midrange ejection fraction (HFmrEF; LVEF > 40% and < 55%).MethodsWe analyzed data on isolated CABG patients from the Veterans Affairs national database (2010-2019). We stratified patients into control (normal LVEF and no heart failure), HFmrEF, and heart failure with reduced LVEF (HFrEF) groups. We compared all-cause mortality and heart failure hospitalization rates between groups with a Cox model and recurrent events analysis, respectively.ResultsIn 6533 veterans, HFmrEF and HFrEF was present in 1715 (26.3%) and 566 (8.6%) respectively; the control group had 4252 (65.1%) patients. HFrEF patients were more likely to have diabetes mellitus (59%), insulin therapy (36%), and previous myocardial infarction (31%). Anemia was more prevalent in patients with HFrEF (49%) as was a lower serum albumin (mean, 3.6 mg/dL). Compared with the control group, a higher risk of death was observed in the HFmrEF (hazard ratio [HR], 1.3 [1.2-1.5)] and HFrEF (HR, 1.5 [1.2-1.7]) groups. HFmrEF patients had the higher risk of myocardial infarction (subdistribution HR, 1.2 [1-1.6]; P = .04). Risk of heart failure hospitalization was higher in patients with HFmrEF (HR, 4.1 [3.5-4.7]) and patients with HFrEF (HR, 7.2 [6.2-8.5]).ConclusionsHeart failure with midrange ejection fraction negatively affects survival after CABG. These patients also experience higher rates myocardial infarction and heart failure hospitalization.  相似文献   
46.
47.
Plasticity enables alterations in transmission in nociceptive systems. It is this plasticity in the nervous system that can alter the linear relation between noxious stimuli and the perception of pain and is important in the switch from acute to chronic pain. In this way, a number of CNS mechanisms can alter neuronal activity, leading to abnormal ongoing and stimulus-evoked pains due to peripheral and central changes. Peripheral nerves can become sensitized, spinal cord neurons can be rendered hyperexcitable and ascending projections to higher centres can further trigger changes in descending controls from the midbrain and brainstem. Together, these changes, all of which appear to involve reversible physiological and pharmacological plasticity, can alter the relationship between an applied stimulus and the perceived response and so lead to persistent pain states.  相似文献   
48.
《Injury》2019,50(5):1105-1110
IntroductionGetting the right patient, to the right place, at the right time is dependent on a multitude of modifiable and non-modifiable factors. One potentially modifiable factor is the number and location of trauma centres (TC). Overabundance of TC dilutes volumes and could be associated with worse outcomes. We describe a methodology that evaluates trauma system reconfiguration without reductions in potential access to care. We used the mature trauma system of New South Wales (NSW) as a model given the perceived overabundance of urban major trauma centres (MTC).MethodsWe first evaluated potential access to TC care via ground and air transport through the use of geographic information systems (GIS) network analysis. Potential access was defined as the proportion of the population living within 60-min transport time from a potential scene of injury to a TC by ground or rotary-wing aircraft. Sensitivity analyses were carried out in order to account for potential pre-hospital interventions and/or transport delays; travel times of 15-, 30-, 45-, 60-, and 90-min were also analyzed. We then evaluated if the current configuration of the system (number of urban MTS in the Sydney basin) could be optimized without reductions in potential access to care using two GIS methodologies: location-allocation and individual removal of MTC.Results86% of the NSW population has potential access to a TC within 60 min ground travel time; potential access improves to 99% with rotary-wing transport. The 1% of the population without potential TC access lives in 48% of the land area (>384,000km2). Utilizing two different methodologies we identified that there was no change in potential access by ground transport after removing 1 or 2 MTC in the Sydney basin at the 30-, 45-, and 60-min transport times. However, 0.02% and 0.5% of the population would not have potential access to MTC care at 15 min after removing one and two MTC respectively.DiscussionRedistribution of the number of MTC in the Sydney basin could be achieved without a significant impact on potential access to care. Our approach can be utilized as an initial tool to evaluate a trauma system where overabundance of coverage is present.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号