首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1046篇
  免费   124篇
  国内免费   37篇
耳鼻咽喉   9篇
儿科学   4篇
妇产科学   18篇
基础医学   259篇
口腔科学   154篇
临床医学   63篇
内科学   109篇
皮肤病学   7篇
神经病学   44篇
特种医学   14篇
外国民族医学   1篇
外科学   280篇
综合类   88篇
预防医学   20篇
眼科学   14篇
药学   53篇
中国医学   31篇
肿瘤学   39篇
  2023年   11篇
  2022年   14篇
  2021年   22篇
  2020年   34篇
  2019年   34篇
  2018年   44篇
  2017年   57篇
  2016年   52篇
  2015年   55篇
  2014年   81篇
  2013年   76篇
  2012年   64篇
  2011年   78篇
  2010年   79篇
  2009年   58篇
  2008年   74篇
  2007年   71篇
  2006年   61篇
  2005年   48篇
  2004年   45篇
  2003年   37篇
  2002年   23篇
  2001年   28篇
  2000年   13篇
  1999年   6篇
  1998年   12篇
  1997年   7篇
  1996年   7篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
排序方式: 共有1207条查询结果,搜索用时 15 毫秒
991.
In the present study, we describe autologous blood coagulum (ABC) as a physiological carrier for BMP6 to induce new bone formation. Recombinant human BMP6 (rhBMP6), dispersed within ABC and formed as an autologous bone graft substitute (ABGS), was evaluated either with or without allograft bone particles (ALLO) in rat subcutaneous implants and in a posterolateral lumbar fusion (PLF) model in rabbits. ABGS induced endochondral bone differentiation in rat subcutaneous implants. Coating ALLO by ABC significantly decreased the formation of multinucleated foreign body giant cells (FBGCs) in implants, as compared with ALLO alone. However, addition of rhBMP6 to ABC/ALLO induced a robust endochondral bone formation with little or no FBGCs in the implant. In rabbit PLF model, ABGS induced new bone formation uniformly within the implant resulting in a complete fusion when placed between two lumbar transverse processes in the posterolateral gutter with an optimum dose of 100‐μg rhBMP6 per ml of ABC. ABGS containing ALLO also resulted in a fusion where the ALLO was replaced by the newly formed bone via creeping substitution. Our findings demonstrate for the first time that rhBMP6, with ABC as a carrier, induced a robust bone formation with a complete spinal fusion in a rabbit PLF model. RhBMP6 was effective at low doses with ABC serving as a physiological substratum providing a permissive environment by protecting against foreign body reaction elicited by ALLO.  相似文献   
992.
993.
994.
995.
996.
Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disease characterized by extraskeletal bone formation through endochondral ossification. FOP patients harbor point mutations in ACVR1 (also known as ALK2), a type I receptor for bone morphogenetic protein (BMP). Two mechanisms of mutated ACVR1 (FOP-ACVR1) have been proposed: ligand-independent constitutive activity and ligand-dependent hyperactivity in BMP signaling. Here, by using FOP patient-derived induced pluripotent stem cells (FOP-iPSCs), we report a third mechanism, where FOP-ACVR1 abnormally transduces BMP signaling in response to Activin-A, a molecule that normally transduces TGF-β signaling but not BMP signaling. Activin-A enhanced the chondrogenesis of induced mesenchymal stromal cells derived from FOP-iPSCs (FOP-iMSCs) via aberrant activation of BMP signaling in addition to the normal activation of TGF-β signaling in vitro, and induced endochondral ossification of FOP-iMSCs in vivo. These results uncover a novel mechanism of extraskeletal bone formation in FOP and provide a potential new therapeutic strategy for FOP.Heterotopic ossification (HO) is defined as bone formation in soft tissue where bone normally does not exist. It can be the result of surgical operations, trauma, or genetic conditions, one of which is fibrodysplasia ossificans progressiva (FOP). FOP is a rare genetic disease characterized by extraskeletal bone formation through endochondral ossification (16). The responsive mutation for classic FOP is 617G > A (R206H) in the intracellular glycine- and serine-rich (GS) domain (7) of ACVR1 (also known as ALK2), a type I receptor for bone morphogenetic protein (BMP) (810). ACVR1 mutations in atypical FOP patients have been found also in other amino acids of the GS domain or protein kinase domain (11, 12). Regardless of the mutation site, mutated ACVR1 (FOP-ACVR1) has been shown to activate BMP signaling without exogenous BMP ligands (constitutive activity) and transmit much stronger BMP signaling after ligand stimulation (hyperactivity) (1225).To reveal the molecular nature of how FOP-ACVR1 activates BMP signaling, cells overexpressing FOP-ACVR1 (1220), mouse embryonic fibroblasts derived from Alk2R206H/+ mice (21, 22), and cells from FOP patients, such as stem cells from human exfoliated deciduous teeth (23), FOP patient-derived induced pluripotent stem cells (FOP-iPSCs) (24, 25) and induced mesenchymal stromal cells (iMSCs) from FOP-iPSCs (FOP-iMSCs) (26) have been used as models. Among these cells, Alk2R206H/+ mouse embryonic fibroblasts and FOP-iMSCs are preferred because of their accessibility and expression level of FOP-ACVR1 using an endogenous promoter. In these cells, however, the constitutive activity and hyperactivity is not strong (within twofold normal levels) (22, 26). In addition, despite the essential role of BMP signaling in development (2731), the pre- and postnatal development and growth of FOP patients are almost normal, and HO is induced in FOP patients after physical trauma and inflammatory response postnatally, not at birth (16). These observations led us to hypothesize that FOP-ACVR1 abnormally responds to noncanonical BMP ligands induced by trauma or inflammation.Here we show that FOP-ACVR1 transduced BMP signaling in response to Activin-A, a molecule that normally transduces TGF-β signaling (10, 3234) and contributes to inflammatory responses (35, 36). Our in vitro and in vivo data indicate that activation of TGF-β and aberrant BMP signaling by Activin-A in FOP-cells is one cause of HO in FOP. These results suggest a possible application of anti–Activin-A reagents as a new therapeutic tool for FOP.  相似文献   
997.
Mechanisms involved in bone resorption   总被引:4,自引:0,他引:4  
Udagawa N 《Biogerontology》2002,3(1-2):79-83
Osteoclasts, which are present only in bone, are multinucleated giant cells with the capacity to resorb mineralized tissues. These osteoclasts are derived from hemopoietic progenitors of the monocyte-macrophage lineage. Osteoblasts or bone marrow-derived stromal cells are involved in osteoclastogenesis through a mechanism involving cell-to-cell contact with osteoclast progenitors. Experiments on the osteopetrotic op/op mouse model have established that a product ofosteo blasts, macrophage colony-stimulating factor (M-CSF), regulates differentiation of osteoclast progenitors into osteoclasts. Recent discovery of osteoclast differentiation factor (ODF)/receptor activator of NF-κ Bligand (RANKL) allowed elucidation of the precise mechanism by which osteoblasts regulate osteoclastic bone resorption. Treatment of osteoblasts with bone-resorbing factors up-regulated expression of RANKL mRNA. In contrast, TNF α stimulates osteoclast differentiation in the presence of M-CSF through a mechanism independent of the RANKL system. IL-1 also directly acts on mature osteoclasts as a potentiator of osteoclast activation. In addition, TGF-β super family members, such as bone morphogenetic proteins(BMPs) strikingly enhanced osteoclast differentiation from their progenitors and survival of mature osteoclasts induced by RANKL. These results suggest that BMP-mediated signals cross-communicate with RANKL-mediated ones in inducing osteoclast differentiation and function. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
998.
The nuclear retinoic acid receptors (RARs) play key roles in skeletal development and endochondral ossification. Previously, we showed that RARγ regulates chondrogenesis and that pharmacological activation of RARγ blocked heterotopic ossification (HO), pathology in which endochondral bone forms in soft tissues. Thus, we reasoned that pharmacological inhibition of RARγ should enhance endochondral ossification, leading to a potential therapeutic strategy for bone deficiencies. We created surgical bone defects in wild type and RARγ‐null mice and monitored bone healing. Fibrous, cartilaginous, and osseous tissues formed in both groups by day 7, but more cartilaginous tissue formed in mutants within and around the defects compared to controls. Next, we implanted a mixture of Matrigel and rhBMP2 subdermally to induce ectopic endochondral ossification. Administration of RARγ antagonists significantly stimulated ectopic bone formation in wild type but not in RARγ‐null mice. The antagonist‐induced increases in bone formation were preceded by increases in cartilage formation and were accompanied by higher levels of phosphorylated Smad1/5/8 (pSmad1/5/8) compared to vehicle‐treated control. Higher pSmad1/5/8 levels were also observed in cartilaginous tissues forming in healing bone defects in RARγ‐null mice, and increases in pSmad1/5/8 levels and Id1‐luc activity were observed in RARγ antagonist‐treated chondrogenic cells in culture. Our data show that genetic or pharmacological interference with RARγ stimulates endochondral bone formation and does so at least in part by stimulating canonical BMP signaling. This pharmacologic strategy could represent a new tool to enhance endochondral bone formation in the setting of various orthopedic surgical interventions and other skeletal deficiencies. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1096–1105, 2017.
  相似文献   
999.
摘要 背景:研究发现,在小段骨缺损中植入骨或仿生骨组织,坏死组织逐渐被替换,移植骨中会长入有活性的血管肉芽组织,移植骨被吸收,新骨主动形成。但在大段骨缺损,这一过程发生较慢且不完全。 目的:观察纳米级羟基磷灰石材料复合骨形态发生蛋白后大段骨缺损修复能力及诱导生成血管能力。 方法:制作兔桡骨大段骨缺损模型,抽签随机分2组,选择一侧分别植入纳米级羟基磷灰石/骨形态发生蛋白、纳米级羟基磷灰石修复,均以另一侧为空白对照。植入后6个月行大体观察、X射线、组织形态学检查、组织切片碱性磷酸酶染色、成骨量分析、血管内皮细胞生长因子阳性细胞率及阳性血管数检测。 结果与结论:空白对照组基本无骨组织生成。纳米级羟基磷灰石植入后被新生骨组织分割成小块,材料原有结构破坏。纳米级羟基磷灰石/骨形态发生蛋白组较纳米级羟基磷灰石组残存材料更少,材料降解更为彻底。纳米级羟基磷灰石/骨形态发生蛋白组成骨量、血管内皮细胞生长因子表达及血管内皮细胞生长因子阳性血管数目均明显高于纳米级羟基磷灰石组(P < 0.001),且血管内皮细胞生长因子表达与血管内皮细胞生长因子阳性血管数目成正比关系。说明纳米级羟基磷灰石与骨形态发生蛋白复合后,骨修复能力进一步增强,诱导血管生成能力明显提高。 关键词:纳米级羟基磷灰石;血管内皮细胞生长因子;骨形态发生蛋白;血管生成;纳米生物材料 doi:10.3969/j.issn.1673-8225.2011.12.006  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号