首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  免费   0篇
妇产科学   5篇
基础医学   12篇
临床医学   4篇
内科学   14篇
神经病学   38篇
特种医学   1篇
外科学   8篇
综合类   2篇
预防医学   3篇
药学   94篇
肿瘤学   1篇
  2023年   2篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2017年   4篇
  2016年   1篇
  2015年   3篇
  2014年   6篇
  2013年   6篇
  2012年   5篇
  2011年   10篇
  2010年   16篇
  2009年   18篇
  2008年   24篇
  2007年   12篇
  2006年   13篇
  2005年   11篇
  2004年   13篇
  2003年   7篇
  2002年   6篇
  2001年   4篇
  2000年   5篇
  1998年   5篇
  1997年   3篇
  1995年   2篇
排序方式: 共有182条查询结果,搜索用时 15 毫秒
31.
The endogenous opioid dynorphin B was evaluated for its role in cannabinoid-induced antinociception. Previous work in our laboratory has shown that the synthetic, bicyclic cannabinoid, CP55,940, induces the release of dynorphin B whilst the naturally occurring cannabinoid, Δ9-tetrahydrocannabinol (Δ9-THC), releases dynorphin A. The dynorphins contribute in part to the antinociceptive effects of both cannabinoids at the level of the spinal cord. The present study compares dynorphin B released from perfused rat spinal cord in response to acute administration of anandamide (AEA), Δ9-THC and CP55,940 at two time points, 10 min and 30 min post administration, and attempts to correlate such release with antinociceptive effects of the drugs. Dynorphin B was collected from spinal perfusates of rats pretreated with Δ9-THC, CP55,940 or AEA. The supernatant was lyophilized and the concentrations of dynorphin B were measured via radioimmunoassay. At a peak time of antinociception (10 min), CP55,940 and Δ9-THC induced significant two-fold increases in the release of dynorphin B. AEA did not significantly release dynorphin B. Upon a 30-min pretreatment with the drugs, no significant dynorphin B release was observed, although antinociceptive effects persisted for CP55,940 and Δ9-THC. Previous work indicates that Δ9-THC releases dynorphin A while AEA releases no dynorphin A. This study confirms that although all three test drugs produced significant antinociception at 10 min, the endocannabinoid, AEA, does not induce antinociception via dynorphin release. Thus, our data indicate a distinct mechanism which underlies AEA-induced antinociception.  相似文献   
32.
33.
Increasing evidence indicates that the gut peptide ghrelin facilitates learning behavior and memory tasks. The present study demonstrates a cellular signaling mechanism of ghrelin in the hippocampus. Ghrelin stimulated CREB (cAMP response-element binding protein) through the activation of cAMP, protein kinase A (PKA), and PKA-dependent phosphorylation of NR1 subunit of the NMDA receptor. Ghrelin increased phalloidin-binding to F-actin suggesting CREB-induced gene expression might include reorganization of cytoskeletal proteins. The effect was blocked by the antagonist of the ghrelin receptor in spite of the receptor’s primary coupling to Gq proteins. We also discovered inhibitory effect of endocannabinoids on ghrelin-induced NR1 phosphorylation and CREB activity. 2-arachidonoylglycerol (2-AG) exerted its inhibitory effect in the Type 1 cannabinoid receptor (CB1R)-dependent manner, while anandamide’s inhibitory effect persisted in the presence of antagonists of CB1R and the vanilloid receptor, suggesting that anandamide might directly inhibit NMDA receptor/channels. Our findings may explain how ghrelin and endocannabinoids regulate hippocampal appetitive learning and plasticity.  相似文献   
34.
PURPOSE: The purpose of this study was to evaluate in mice the anticonvulsant potential of N-palmitoylethanolamide, a putative endocannabinoid that accumulates in the body during inflammatory processes. METHODS: N-palmitoylethanolamide was injected intraperitoneally (i.p.) in mice and evaluated for anticonvulsant activity [in maximal electroshock seizure (MES) and chemical-induced convulsions] and for neurologic impairment (rotorod). It was compared with anandamide and with different palmitic acid analogues as well as with reference anticonvulsants (AEDs) injected under the same conditions. RESULTS: The MES test showed, after i.p. administration to mice, that N-palmitoy]ethanolamide had an median effective dose (ED50) value comparable to that of phenytoin (PHT; 8.9 and 9.2 mg/kg, respectively). In the subcutaneous pentylenetetrazol test and in the 3-mercaptropropionic acid test, it was effective only against tonic convulsions. N-palmitoylethanolamide was devoid of neurologic impairment < or = 250 mg/kg, yielding a high protective index. CONCLUSIONS: N-palmitoylethanolamide, an endogenous compound with antiinflammatory and analgesic activities, is a potent AED in mice. Its precise mechanism of action remains to be elucidated.  相似文献   
35.
We have previously reported that the synthetic cannabinoid receptor agonist WIN55,212-2 causes a selective reduction in paired-pulse depression of population spikes in the CA1 region of the rat hippocampal slice. This effect is consistent with the observation that activation of cannabinoid receptors inhibits GABA release in the hippocampus. We have now investigated the actions of the putative endogenous cannabinoids 2-arachidonoyl-glycerol (2-AG) and anandamide in this system. 2-AG mimicked the effect of WIN55,212-2 by selectively reducing paired-pulse depression at concentrations of 1–30 μM. In contrast, anandamide caused a selective increase in paired-pulse depression at concentrations of 1–30 μM. This effect was mimicked by the vanilloid receptor agonists capsaicin and resiniferatoxin, and blocked by the vanilloid receptor antagonist capsazepine, but not by the cannabinoid receptor antagonist AM281. These results are the first to demonstrate a clear functional vanilloid receptor-mediated effect in the hippocampus, and further, that anandamide but not 2-AG acts at these receptors to increase paired-pulse depression of population spikes.  相似文献   
36.
37.
The vanilloid receptor 1 (TRPV1) is activated by capsaicin, several endogenous lipids, acidic pH and elevated temperatures. Inflammatory mediators (BK, substance P) also modulate TRPV1 activity. In this study we investigated the effect of TRPV1 agonists and elevated temperatures on neuronal membrane excitability by electrophysiological techniques using freshly isolated rat dorsal root ganglion neurons (DRGs). Focal application of heated solutions demonstrated that the normal threshold (~42°C) of TRPV1 activation was reduced in the presence of capsaicin (1μM) to ~30°C. In current-clamp recordings, increasing the temperature of the solution resulted in larger membrane depolarizations and significantly altered the pattern and onset of the action potential train evoked by 1μM capsaicin. These effects were blocked by the TRPV1 antagonist capsazepine (10μM). In contrast to capsaicin, anandamide (10μM) alone did not evoke action potentials, but it did alter the excitability of neurons to subsequent applications of heat (50°C). Together these results provide evidence that a synergistic interaction of TRPV1 ligands and elevated temperature activates TRPV1 receptors and results in profound effects on membrane excitability. Received 19 November 2007; returned for revision 21 January 2008; received from final revision 13 March 2008; accepted by G. Geisslinger 14 March 2008  相似文献   
38.
Anandamide, an endogenous agonist of cannabinoid receptors, activates various signal transduction pathways. Anandamide also activates vanilloid VR(1) receptor, which was a nonselective cation channel with high Ca(2+) permeability and had sensitivity to capsaicin, a pungent principle in hot pepper. The effects of anandamide and capsaicin on arachidonic acid metabolism in neuronal cells have not been well established. We examined the effects of anandamide and capsaicin on arachidonic acid release in rat pheochromocytoma PC12 cells. Both agents stimulated [3H]arachidonic acid release in a concentration-dependent manner from the prelabeled PC12 cells even in the absence of extracellular CaCl(2). The effect of anandamide was neither mimicked by an agonist nor inhibited by an antagonist for cannabinoid receptors. The effects of anandamide and capsaicin were inhibited by phospholipase A(2) inhibitors, but not by an antagonist for vanilloid VR(1) receptor. In PC12 cells preincubated with anandamide or capsaicin, [3H]arachidonic acid release was marked and both agents were no more effective. Co-addition of anandamide or capsaicin synergistically enhanced [3H]arachidonic acid release by mastoparan in the absence of CaCl(2). Anandamide stimulated prostaglandin F(2alpha) formation. These findings suggest that anandamide and capsaicin stimulated arachidonic acid metabolism in cannabinoid receptors- and vanilloid VR(1) receptor-independent manner in PC12 cells. The possible mechanisms are also discussed.  相似文献   
39.
目的探讨内源性大麻素(anandamide,AEA)对肝组织神经末梢去甲肾上腺素(NE)的影响及可能的神经生物学机制。方法制备小鼠肝突触小体,用高效液相色谱-电化学(HPLC-ECD)方法检测AEA在体外对肝突触小体NE递质的影响。结果小鼠肝突触小体分离成功,体外实验中随着AEA浓度逐渐升高至10μmol/L,肝突触小体内NE的含量减少27.81%~70.79%,存在明显的剂量效应关系,差异有统计学意义(P〈0.01);AEA浓度继续升高时,去甲肾上腺素含量不再继续减少。结论AEA能通过干扰小鼠肝突触部位NE递质的再摄取,产生抑制性作用。  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号