首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   579篇
  免费   23篇
  国内免费   8篇
耳鼻咽喉   1篇
儿科学   21篇
妇产科学   4篇
基础医学   79篇
临床医学   57篇
内科学   84篇
皮肤病学   4篇
神经病学   67篇
特种医学   40篇
外科学   17篇
综合类   33篇
预防医学   50篇
眼科学   36篇
药学   73篇
中国医学   18篇
肿瘤学   26篇
  2023年   4篇
  2022年   12篇
  2021年   11篇
  2020年   6篇
  2019年   37篇
  2018年   63篇
  2017年   20篇
  2016年   11篇
  2015年   23篇
  2014年   50篇
  2013年   44篇
  2012年   64篇
  2011年   46篇
  2010年   51篇
  2009年   23篇
  2008年   34篇
  2007年   25篇
  2006年   23篇
  2005年   11篇
  2004年   5篇
  2003年   9篇
  2002年   4篇
  2001年   9篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1994年   1篇
  1992年   2篇
  1987年   1篇
  1985年   3篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   4篇
  1973年   1篇
排序方式: 共有610条查询结果,搜索用时 343 毫秒
51.
Serum sulfate concentrations may reach five to ten times normal in renal failure patients dialyzed on a sorbent cartridge system, and these patients have elevated alkaline phosphatase levels suggesting an increased incidence of renal oseodystrophy. We studied the effect of adding sulfate on ionized calcium (Ca2+) in human serum in vitro and in rat serum in vivo. K2SO4 or Na2SO4: NaCI mixtures were added to aliquots of serum from normal subjects to reproduce the observed biologic range of sulfate concentrations up to 10 mmol. Serum Ca2+ concentration was found to decrease linearly as serum sulfate concentration increased, for each subject. The weighted mean slope estimates of the effect of sulfate on ionized calcium in two experiments were -.0197 and -.0181. Rats were infused through the inferior vena cava with 2mL of either 200mmol NaCI (N=5) or 100 mmol Na2SO4 (N=6), after ligation of the renal arteries and veins and withdrawal of 2 mL blood for baseline studies. The animals were killed by exsanguination from the aorta after a five-minute equilibration period. In rats administered NaCI, no difference in Ca2 or sulfate concentration was found between pre and post infusion sera. In the Na2SO4 treated rats, however, a significant mean increase of 0.635 mmol (p < .005) in serum sulfate concentration was associated with a significant mean decrease of -0.062mmol (p < 1) in serum Ca2+ concentration. We conclude that the acute in vitro and in vivo addition of sulfate results in a decrease in serum Ca2+ concentration. Thus, hypersulfatemia, which is present chronically in patients on sorbent dialysis systems, may contribute to elevated alkaline phosphatase levels in these patients.  相似文献   
52.
Hereditary tyrosinemia type 1 (HT1) is an autosomal recessive disease severely affecting liver and kidney and is caused by a deficiency in fumarylacetoacetate hydrolase (FAH). Administration of 2-(2-nitro-4-trifluoro-methylbenzyol)-1,3 cyclohexanedione (NTBC) improves the HT1 phenotype but some patients do not respond to NTBC therapy. The objective of the present study was to evaluate whether administration of dichloroacetate, an inhibitor of maleyl acetoacetate isomerase (MAAI) to FAH-knockout mice could prevent acute pathological injury caused by NTBC withdrawal. DCA (0.5 and 5g/L) was given in combination with a standard diet or with a tyrosine-restricted diet. With the low-tyrosine diet body weight loss and most of hepatic and renal injuries were prevented regardless the DCA dose. The administration of DCA with a standard diet did not prevent damage nor the oxidative stress response nor the AFP induction seen in FAH-knockout mice. DCA was shown to inhibit hepatic MAAI activity to 86% (0.5g/L) and 94% (5g/L) of untreated wild-type mice. Interestingly, FAH(-/-) mice deprived of NTBC (NTBC-OFF) and NTBC-treated FAH-knockout mice had similar low hepatic MAAI activity levels, corresponding to 10-20% of control. Thus the failure of DCA treatment in FAH(-/-) mice seems to be attributed to the residual MAAI activity, high enough to lead to FAA accumulation and HT1 phenotype.  相似文献   
53.
We aimed to determine an optimal protocol for inducing a focal inflammatory lesion within the rat brain that could be large enough for an easier MRI monitoring while still relevant as a multiple sclerosis (MS) like lesion. We adapted a two-hit model based on pre-sensitization of the Lewis rat with myelin oligodendrocyte protein (MOG) followed by stereotaxic injection of pro-inflammatory cytokines (TNFα + IFNγ) within the internal capsule. We compared the following two strategies to increase focal lesion development for an easier MR translation: (1) a higher sensitization step (MOG50) or (2) a higher cytokine step with lower sensitization (MOG25). Control animals were administered only cytokines without MOG pre-sensitization. Animals were followed with T2, diffusion and T1 post gadolinium weighted images at 1, 3 and 7 days following cytokine injection. Immunostaining was performed at the same time points for macrophages (ED1), myelin (MBP and Luxol Fast Blue) and blood brain barrier integrity (IgG). At day 1, the focal lesions depicted with T2-weighted images were very similar among groups and related to vasogenic edema (high apparent diffusion coefficient (ADC), gadolinium enhancement and IgG extravasation) induced by cytokines irrespective of the pre-sensitization step. Then, at day 3, MOG50 rats developed statistically larger T2 lesions than MOG25 and control rats that were correlated with inflammatory cell accumulation. At day 7, MOG50 rats also showed larger T2 lesions than MOG25 and control rats, together with loss of anisotropy that were correlated with demyelination. In contrast, MOG25 and control rats developed similar MR lesions decreasing over time and almost undetectable at day 7. We conclude that with a high pre-sensitization step, the focal lesion can be monitored by MRI whose signal reflects some features of a MS-like lesion, i.e. edema, inflammatory cell accumulation and later demyelination.  相似文献   
54.
Increasing interest in developing reliable and reproducible models to study angiogenesis has emerged due to recent advances in the treatment of eye disease with pathologic angiogenesis. This review provides a summary of the principal ocular animal models for angiogenesis. Models of anterior segment neovascularization include the corneal micropocket assay, used to study the influence of specific molecules/proteins in angiogenesis, and corneal chemical and suture induced injury, which mimic more closely the complex nature of the human disease. Angiogenesis models of the posterior segment include the well-known laser-induced injury of the choroid/Bruch's membrane, as well as the oxygen induced retinopathy and models of injections of pro-angiogenic/inflammatory molecules. In addition, knockout or knock-in transgenic mice provide powerful tools in studying the role of specific proteins in angiogenesis.  相似文献   
55.
BACKGROUND & AIMS: How specifically to treat pancreatic and other cancers harboring Fanconi anemia gene mutations has raised great interest recently, yet preclinical studies have been hampered by the lack of well-controlled human cancer models. METHODS: We endogenously disrupted FANCC and FANCG in a human adenocarcinoma cell line and determined the impact of these genes on drug sensitivity, irradiation sensitivity, and genome maintenance. RESULTS: FANCC and FANCG disruption abrogated FANCD2 monoubiquitination, confirming an impaired Fanconi anemia pathway function. On treatment with DNA interstrand-cross-linking agents, FANCC and FANCG disruption caused increased clastogenic damage, G2/M arrest, and decreased proliferation. The extent of hypersensitivity varied among agents, with ratios of inhibitory concentration 50% ranging from 2-fold for oxaliplatin to 14-fold for melphalan, a drug infrequently used in solid tumors. No hypersensitivity was observed on gemcitabine, etoposide, 3-aminobenzamide, NU1025, or hydrogen peroxide. FANCC and FANCG disruption also resulted in increased clastogenic damage on irradiation, but only FANCG disruption caused a subsequent decrease in relative survival. Finally, FANCC and FANCG disruption increased spontaneous chromosomal breakage, supporting the role of these genes in genome maintenance and likely explaining why they are mutated in sporadic cancer. CONCLUSIONS: Our human cancer cell model provides optimal controls to elucidate fundamental biologic features of individual Fanconi anemia gene defects and facilitates preclinical studies of therapeutic options. The impact of Fanconi gene defects on drug and irradiation sensitivity renders these genes promising targets for a specific, genotype-based therapy for individual cancer patients, providing a strong rationale for clinical trials.  相似文献   
56.
57.
We investigated the cytotoxic effects of formaldehyde (FA) on lymphocytes. FA-exposed mice showed a profound reduction not only in the number of natural killer (NK) cells but also in the expression of NK cell-specific receptors, but these mice did not exhibit decreases in the numbers of T or B lymphocytes. FA exposure also induced decreases in NK cytolytic activity and in the expression of NK cell-associated genes, such as IFN-γ, perforin and CD122. To determine the effect of FA on tumorigenicity, C57BL/6 mice were subcutaneously injected with B16F10 melanoma cells after FA exposure. The mass of the B16F10 tumor and the concentration of extravascular polymorphonuclear leukocytes were greater than those in unexposed tumor-bearing control mice. The number and cytolytic activity of NK cells were also reduced in B16F10 tumor-bearing mice exposed to FA. To determine how FA reduces the NK cell number, NK precursor (pNK) cells were treated with FA, and the differentiation status of the NK cells was analyzed. NK cell differentiation was impaired by FA treatment in a concentration-dependent manner. These findings indicate that FA exposure may promote tumor progression by impairing NK cell function and differentiation.  相似文献   
58.
It is well established that genetic alterations may be associated to prognosis in tumor patients. This study investigates chromosomal changes that predict the clinical outcome of head and neck squamous cell carcinoma (HNSCC) and correlate to characteristic clinicopathological parameters. We applied comparative genomic hybridization (CGH) to tissue samples from 117 HNSCC patients scheduled for radiotherapy. Genomic aberrations occurring in more than five patients were studied for impact on locoregional progression (LRP)-free survival. p values were adjusted by the Hochberg–Benjamini procedure and significant aberrations and clinical variables subjected to a stepwise backwards Cox proportional model. Significant alterations were further analyzed by array-CGH and fluorescence in situ hybridization (FISH). In multivariate survival analysis gains on 1q and 16q predict reduced LRP-free survival independently from known prognostic factors. Cluster analysis separated the HNSCC cases into two groups (cluster 1 and 2) that are characterized by significant differences for imbalances in 13 chromosomal regions. Moreover, it became apparent that cluster 1 correlates to nonanemic patients, while cluster 2 represents predominantly anemic cases. Array-CGH pinpoints 16q24.3 to be the region of interest on chromosome 16 which was further verified by FISH analysis where an increased copy number of FANCA, a member of the Fanconi anemia/breast cancer pathway, could be identified. This study demonstrates that chromosomal gains on 1q and 16q as well as chromosomal loss on 18q represent prognostic markers in HNSCC and that these alterations may explain to some extent the dismal course of a subgroup of patients.  相似文献   
59.
As the population ages, the economic and societal impacts of neurodegenerative and neuropsychiatric disorders are expected to rise sharply. Like dementia, late-life depressive disorders are common and are linked to increased disability, high healthcare utilisation, cognitive decline and premature mortality. Considerable heterogeneity in the clinical presentation of major depression across the life cycle may reflect unique pathophysiological pathways to illness; differentiating those with earlier onset who have grown older (early-onset depression), from those with illness onset after the age of 50 or 60 years (late-onset depression). The last two decades have witnessed significant advances in our understanding of the neurobiology of early- and late-onset depression, and has shown that disturbances of fronto-subcortical functioning are implicated. New biomedical models extend well beyond perturbations of traditional monoamine systems to include altered neurotrophins, endocrinologic and immunologic system dysfunction, inflammatory processes and gene expression alterations. This more recent research has highlighted that a range of illness-specific, neurodegenerative and vascular factors appear to contribute to the various phenotypic presentations. This review highlights the major features of late-life depression, with specific reference to its associated aetiological, clinical, cognitive, neuroimaging, neuropathological, inflammatory and genetic correlates. Data examining the efficacy of pharmacological, non-pharmacological and novel treatments for depression are discussed. Ultimately, future research must aim to evaluate whether basic biomedical knowledge can be successfully translated into enhanced health outcomes via the implementation of early intervention paradigms.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号