首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8811篇
  免费   383篇
  国内免费   117篇
耳鼻咽喉   149篇
儿科学   103篇
妇产科学   80篇
基础医学   1872篇
口腔科学   247篇
临床医学   571篇
内科学   401篇
皮肤病学   24篇
神经病学   1659篇
特种医学   285篇
外科学   772篇
综合类   520篇
一般理论   1篇
预防医学   343篇
眼科学   1686篇
药学   303篇
中国医学   153篇
肿瘤学   142篇
  2023年   152篇
  2022年   308篇
  2021年   367篇
  2020年   327篇
  2019年   280篇
  2018年   228篇
  2017年   264篇
  2016年   214篇
  2015年   223篇
  2014年   432篇
  2013年   585篇
  2012年   384篇
  2011年   564篇
  2010年   462篇
  2009年   444篇
  2008年   488篇
  2007年   394篇
  2006年   382篇
  2005年   284篇
  2004年   236篇
  2003年   231篇
  2002年   136篇
  2001年   122篇
  2000年   118篇
  1999年   107篇
  1998年   81篇
  1997年   94篇
  1996年   65篇
  1995年   93篇
  1994年   65篇
  1993年   70篇
  1992年   73篇
  1991年   67篇
  1990年   56篇
  1989年   48篇
  1988年   50篇
  1987年   55篇
  1986年   64篇
  1985年   91篇
  1984年   79篇
  1983年   43篇
  1982年   60篇
  1981年   61篇
  1980年   42篇
  1979年   63篇
  1978年   42篇
  1977年   54篇
  1976年   29篇
  1974年   25篇
  1972年   19篇
排序方式: 共有9311条查询结果,搜索用时 15 毫秒
51.
Lesions in the primary visual cortex induce severe loss of visual perception. Depending on the size of the lesion, the visual field might be affected by small scotomas, hemianopia, or complete loss of vision (cortical blindness). In many cases, the whole visual field of the patient is affected by the lesion, but diffuse light-dark discrimination remains (residual rudimentary vision, RRV). In other cases, a sparing of a few degrees can be found (severely reduced vision, SRV).In a follow-up study, we mapped visually induced cerebral activation of three subjects with SRV using functional magnetic resonance imaging. We were especially interested in the visual areas that would be activated if subjects could perceive the stimulus consciously although information flow from V1 to higher visual areas was strongly reduced or virtually absent. Because subjects were only able to discriminate strong light from darkness, we used goggles flashing intense red light at a frequency of 3 Hz for full visual field stimulation. Besides reduced activation in V1, we found activation in the parietal cortex, the frontal eye fields (FEF), and the supplementary eye fields (SEF). In all patients, FEF activation was pronounced in the right hemisphere. These patterns were never seen in healthy volunteers. In a patient who recovered completely, we observed that extrastriate activation disappeared in parallel with the visual field restitution. This result suggests that damage to the primary visual cortex changes the responsiveness of parietal and extravisual frontal areas in patients with SRV. This unexpected result might be explained by increased stimulus-related activation of attention-related networks.  相似文献   
52.
We studied visual discrimination learning in a group of Nigerian dwarf goats using a computer-based learning device which was integrated in the animals' home pen. We conducted three consecutive learning tasks (T1, T2 and T3), each of which lasted for 13 days. In each task, a different set of four visual stimuli was presented on a computer screen in a four-choice design. Predefined sequences of stimulus combinations were presented in a pseudorandom order. Animals were rewarded with drinking water when they chose the positive stimulus by pressing a button next to it. Noninvasive measurements of goats' heartbeat intervals were carried out on the first and the last 2 days of each learning task. We analysed heart rate (HR) and heart rate variability (HRV) of resting animals to study sustained physiological effects related to general learning challenge rather than acute excitement during an actual learning session. The number of trials to reach the learning criterion was 1000 in T1, when visual stimuli were presented to the goats for the first time, but decreased to 210 in T2 and 240 in T3, respectively. A stable plateau of correct choices between 70% and 80% was reached on Day 10 in T1, on Day 8 in T2 and on Day 6 in T3. We found a significant influence of the task and of the interaction between task and day on learning success. Whereas HR increased throughout T1, this relationship was inverted in T2 and T3, indicating different effects on the HR depending on how familiar goats were with the learning task. We found a significant influence of the task and the interaction between task and time within the task on HRV parameters, indicating changes of vagal activity at the heart. The results suggest that changes in HR related to learning were predominantly caused by a withdrawal of vagal activity at the heart. With regard to nonlinear processes in heartbeat regulation, increased deterministic shares of HRV indicated that the animals did not really relax until the end of T3. Comparing changes of HR and HRV in T3 and in a subsequent postexperiment (PE), we assume a positive effect of such cognitive challenges once the task had been learned by the animals.  相似文献   
53.
In kittens, callosally projecting neurons were labeled by retrograde transport of FITC- (fluorescein isothiocyanate)- and TRITC- (tetramethylrhodamine isothiocyanate)-conjugated latex microspheres injected in two different visual areas (17, 17/18, 19, or postero-medial lateral suprasylvian; PMLS) at postnatal day 3. At postnatal day 57 more than 1200 labeled neurons in visual cortical areas were intracellularly injected with 3% lucifer yellow (LY) in perfusion-fixed slices of the contralateral hemisphere. The distribution of labeled neurons was charted, and LY-filled neurons were classified on the basis of their area and layer of location, and dendritic pattern. The dendritic arbors of 120 neurons were computer reconstructed. For the basal dendrites of supragranular pyramidal neurons a statistical analysis of number of nodes, internodal and terminal segment lengths, and total dendritic length was run relative to the area of location and axonal projection. Connections were stronger between homotopic than between heterotopic areas. Overall tangential and laminar distributions depended on the area injected. Qualitative morphological differences were found among callosally projecting neurons, related to the area of location, not to that of projection. In all projections from areas 17 and 18, pyramidal and spinous stellate neurons were found in supragranular layers. In contrast, spinous stellate neurons lacked in projections from area 19, 21a, PMLS and postero-lateral lateral suprasylvian (PLLS). In all areas, the infragranular neurons showed heterogeneous typology, but in PMLS no fusiform cells were found. Quantitative analysis of basal dendrites did not reveal significant differences in total dendritic length, terminal, or intermediate segment length among neurons in area 17 or 18, and this was related to whether they projected to contralateral areas 17–18 or PMLS. All injections produced exuberant labeling in area 17. No differences could be found between neurons in area 17 (with transient axons through the corpus callosum) and neurons near the 17/18 border (which maintain projections to the corpus callosum). In conclusion, morphology of callosally projecting neurons seems to relate more to intrinsic specificities in the cellular composition of each area than to the area of contralateral axonal projection or the fate of callosal axons.  相似文献   
54.
在这篇论文中,我们提出了用于选择视觉的数据和智能控制的动态网络系统的神经实现过程。模型由数个相互作用的子系统构成,用于不同的处理。所有的神经子系统与信息和控制流程的倒序和顺序紧密相关。  相似文献   
55.
Summary Rats with either bilateral ablations of superior colliculus, bilateral ablations of visual cortex, or sham operations were trained to run across a large arena towards a small illuminated target which varied in location from trial to trial. An impairment in this visually-guided running was apparent in the cortical group, but not in the collicular group. When, in a second experiment, the spatial relationships within the apparatus were changed by extending the entry-tunnel some distance into the arena, the running of the cortical group became even more impaired, while the collicular animals continued to run towards the targets under efficient visual control. In a third experiment, the effect of introducing a novel flashing light in various locations around the perimeter of the arena was investigated. It was found that unlike the other two groups, the collicular animals showed no orienting reflex to the novel stimulus when it was presented outside a broad central area of the visual field.The authors acknowledge the financial support of the Science Research Council (grant no B/RG/61112)  相似文献   
56.
Summary An aberrant crossed corticotectal pathway can be generated by removal of one visual cortex and the contralateral superior colliculus from newborn rats. This aberrant crossed corticotectal projection arises from the pyramidal neurons located in layer V of the visual cortex and terminates in a spatially orderly manner in the appropriate laminae of the cortically deafferented contralateral colliculus. Comparable results cannot be reproduced by unilateral collicular lesions alone. The significance of these findings and the possible mechanisms involved in the formation of the aberrant pathway are discussed and compared with the retinotectal system.The research was supported by USPHS Grant EY-00596 from the National Institutes of Health  相似文献   
57.
用小波变换提取视觉诱发电位信号   总被引:3,自引:0,他引:3  
视觉诱发电位(VEP)信号的动态提取及处理具有重要的临床意义。通过硬件采集的VEP信号经过叠加平均处理后仍含有大量背景噪声,不能直接用于诊断分析。小波变换是一种新兴时频分析方法,适于分析非平稳信号。在我们研制的视觉生理地形图系统中,成功地用它从背景噪声中提取出VEP信号,完成信号的预处理。  相似文献   
58.
Summary In visual cortex of normal adult rabbits, callosal projections are restricted to a 2 mm wide band at the area 17/18 border. In adult rabbits which are monocularly enucleated (ME) on the day of birth, the callosal zone extends 4 mm into the medial region of area 17 in the cortex ipsilateral to the remaining eye. In this study, the function of these anomalous callosal projections in ME rabbits was investigated using electrophysiological techniques. A microelectrode was placed in the visual cortex ipsilateral to the enucleated eye at the 17/18 border, bipolar stimulating electrodes were placed in a homotopic location in the contralateral cortex, and averaged evoked responses (AERs) to stimulation were recorded. The stimulating electrodes were then moved mediolaterally in 1 mm steps, and the AERs were recorded for each location of the stimulating electrodes. In the normal rabbit, a maximal short latency evoked response was recorded when the stimulating electrodes were at a location homotopic to the recording electrode. When the stimulating electrodes were moved a distance of 1 mm or more from this optimal position, this short latency response was either absent or dramatically decreased in amplitude, reflecting the precise topographic pattern of the normal callosal projection. In contrast, in ME rabbits, a consistent response was evoked at the 17/18 border when the stimulating electrodes were moved as much as 3 mm medial to the homotopic position. Since antidromically activated responses and both pre- and post-synaptic orthodromically activated responses contribute to the AER, recordings were also made from single cells in some animals. Orthodromically activated single cell responses were evoked by electrical stimulation in the abnormal medial callosal zone of ME rabbits. The data indicate that abnormal callosal projections in ME rabbits can mediate functional interactions between nonhomotopic areas of the primary visual cortices.  相似文献   
59.
Summary Visual fields of ten cats which had one or both eyes rotated at 8 days of age were measured by two forms of perimetry and compared to visual fields of two normal cats and of four cats with monocular rotations at 16 days, 3 months or 6 months of age. All animals showed excellent localization of visual stimuli and responded to the actual location of stimuli in space rather than to the retinal locus normally associated with that location. In cats with monocular rotations, the field of the normal eye was always normal, extending from 90 ° ipsilateral to 30 ° contralateral. Cats with rotations of one eye at 3 or 6 months of age had essentially normal fields in the rotated eye as well, while cats with surgery at 8 or 16 days had restricted horizontal fields. They responded only to stimuli in the ipsilateral hemifield; they were blind in the contralateral hemifield. Their superior and inferior visual fields were normal. The field deficits related consistently to visual field coordinates and not to the angle or direction of rotation. In cats with binocular rotations the visual field of at least one eye extended across the midline. Thus, the extent of the field depended upon sensorimotor experiences of the cat both before and after surgery. It is argued that these monocular field deficits have a central origin, not a retinal one.When tested with both eyes open, seven of 14 experimental animals did not respond throughout the visual field seen by each eye alone. The total visual field with both eyes open was less than the sum of the two monocular fields; greatest losses were most pronounced in the extreme periphery of the field ipsilateral to the rotated eye. Since changes in eye position (e.g., convergence during bincocular viewing) were not observed, it is suggested that the binocular losses indicate suppression of the deviated eye which has a central origin.All animals were tested for visual following, visually-triggered extension (placing), and visually-guided reaching. Cats which had been routinely encouraged to use the rotated eye(s) by occlusion of the other eye showed skilful performance within a few weeks after surgery as previously reported by Peck and Crewther (1975), Mitchell et al. (1976) and others. In contrast, two cats reared with both eyes open after unilateral rotation in infancy were profoundly handicapped, as previously reported by Yinon (1975, 1976).This research was supported by Grant NS 14116 from the US Public Health Service  相似文献   
60.
Summary Rodents, cats, and most nonmammalian vertebrates with bilateral tectal deafferentation or ablation in adulthood are extremely deficient at orienting to visual stimuli; yet animals with neonatal lesions of superficial layers of the superior colliculus (SC) show partial sparing of this response, particularly for targets in the central visual field. In this study, we sought to determine whether these spared orienting abilities are mediated by aberrant retinal projections to the remaining intermediate layers of the SC, or whether visual cortex (VC) mechanisms or alternative behavioral strategies are responsible. Neonatal golden hamsters received either bilateral heat lesions of the SC (rlSC), or a heat lesion of the right SC and enucleation of the right eye (rSCrE). This latter procedure causes axons from the left eye to recross the tectal midline and terminate in the wrong (left) SC (Schneider 1973). As adults, both groups of hamsters were extremely deficient in visually guided approach to stationary targets, although rlSC-lesioned hamsters showed some sparing for central field targets and rSCrE-lesioned hamsters often made wrong-direction turns for targets in the left peripheral field. We then subjected both groups of neonatally lesioned hamsters to bilateral aspiration lesions of the VC. Retesting showed no change in visual orienting behavior as a result of the cortical lesions. Labeling of the optic tract with horseradish peroxidase (HRP) revealed abundant aberrant retinal projections to remaining intermediate layers of the SC and thalamic nucleus lateralis posterior (LP), as well as supernormal innervation of pretectal nuclei, the dorsal terminal nucleus of the accessory optic tract, and the ventral nucleus of the lateral geniculate body (LGv). We conclude that the spared visual orienting capabilities of hamsters with rlSC and rSCrE lesions are mediated by the aberrant midbrain projections, and that cortical mechanisms are not involved in spared visual orienting functions following these neonatal lesions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号