首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   12篇
  国内免费   1篇
儿科学   1篇
基础医学   31篇
口腔科学   1篇
临床医学   11篇
内科学   77篇
神经病学   4篇
特种医学   1篇
外科学   19篇
综合类   1篇
预防医学   3篇
眼科学   3篇
药学   3篇
肿瘤学   3篇
  2023年   9篇
  2021年   2篇
  2019年   4篇
  2018年   2篇
  2017年   6篇
  2016年   2篇
  2015年   3篇
  2014年   5篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   4篇
  2006年   3篇
  2005年   3篇
  2004年   10篇
  2003年   5篇
  2002年   5篇
  2001年   4篇
  1998年   4篇
  1996年   4篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1992年   4篇
  1991年   8篇
  1990年   2篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1984年   5篇
  1982年   3篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1968年   2篇
  1967年   1篇
  1966年   1篇
  1937年   1篇
  1936年   2篇
  1933年   3篇
  1925年   2篇
排序方式: 共有158条查询结果,搜索用时 0 毫秒
151.
Summary The effect of calcium on somatostatin secretion was investigated in the isolated, perfused canine pancreas preparation and compared with those of acetylcholine, glucose, isoproterenol and arginine. Calcium (5 mmol/l) stimulated somatostatin release in a typical biphasic response pattern being about 5 times as potent as acetylcholine (1 mol/l), arginine (5 mmol/l), and isoproterenol (2 ng/ml) while the release of insulin and glucagon in response to calcium and the other secretagogues were of the same magnitude. Somatostatin release increased progressively when perfusate calcium was increased step-wise from 0 through 1.25 and 2.5 to 5.0 mmol/l. Calcium stimulated the secretion of somatostatin in the absence of glucose. The stimulatory effect of calcium was, however, modulated by the glucose concentration being about twice as large at 200 mg/100 ml as at 25 mg/100 ml glucose in the perfusion medium.  相似文献   
152.
OBJECTIVE AND DESIGN: It has been suggested that circulating free IGF-I participates in glucose homeostasis and that IGFBP-1 reflects changes in insulin sensitivity. To study this further, we examined 10 healthy, nonobese subjects under standardized conditions for 24 h with and without an intravenous infusion of glucose, the latter in order to augment insulin sensitivity. Serum was collected every 2 h for analysis of free and total IGFs, IGFBP-1, - 2 and - 3 and the acid labile subunit (ALS). Insulin sensitivity was estimated at the end of each 24-h study period by use of the hyperinsulinaemic euglycaemic clamp technique. RESULTS: Glucose infusion resulted in mild hyperglycaemia (P < 0.0001), a reduction in IGFBP-1 by approximately 40% (P < 0.0003), and increased insulin and C-peptide levels (P < 0.0001). Glucose infusion also increased insulin sensitivity (P < 0.003). However, despite the reduction in IGFBP-1, glucose infusion did not increase free IGF-I over the control level, and free IGF-II was slightly reduced (P < 0.02). Irrespective of glucose infusion, free IGF-I and -II remained stable during daytime (i.e. they were unresponsive to meal-related changes in plasma glucose), but both free fractions decreased during the night, reaching nadir at 04.00 h. None of the other members of the IGF system showed any relationship with plasma glucose levels. Finally, we failed to observe any relationship between changes in insulin sensitivity and the circulating IGF system. CONCLUSION: We found no evidence that the circulating IGF system is involved in meal-related blood glucose regulation or that it reflects short-term changes in insulin sensitivity in healthy, nonobese subjects. However, we cannot preclude that the observed changes in circulating IGFBP-1 may affect the glucose-lowering effect of IGF-I and -II at the local tissue level.  相似文献   
153.
Summary We developed antisera and radioimmunoassays against synthetic replicas of glucagon-like peptide-1 (1–36) and -2, predicted products of the glucagon precursor, and against glucagon-like peptide-1 (7–36) identical to the sequence of glucagon-like peptide-1, but lacking its first six N-terminal amino acids. With these tools, we studied the localisation and molecular nature of glucagon-like immunoreactivity in human pancreas, small intestine and plasma. By immunohistochemistry glucagon-like peptide-1, and glucagon-like peptide-2 immunoreactivity coexisted with glucagon in pancreatic islet cells and with enteroglucagon in small intestinal enteroglucagon-producing cells. By chromatography of tissue extracts we found that glucagon-like peptide-1 and glucagon-like peptide-2-immunoreactivities in the human pancreas (307±51 and 107±37 pmol/g tissue) were mainly contained in a large peptide, whereas in the small intestine glucagon-like peptide-1 and glucagon-like peptide-2 immunoreactivities were found in separate smaller molecules (49±21 and 77±28/g tissue). By isocratic high pressure liquid chromatography of the large pancreatic glucagon-like peptide we found that this peptide is heterogeneous. By chromatographic analysis glucagon-like peptide-1 immunoreactivity in fasting plasma was mainly found in a large peptide corresponding to the pancreatic form, while after a meal a smaller molecular form coeluting by gel filtration with glucagon-like peptide-1 predominated.  相似文献   
154.
Glucagon-like peptide-1, a new hormone of the entero-insular axis   总被引:5,自引:0,他引:5  
C. Ørskov 《Diabetologia》1992,35(8):701-711
Summary The post-translational processing of proglucagon in the small intestine gives rise to glucagon-like peptide-1 (PG 78–107 amide) which has profound effects on the endocrine pancreas, and in many species also on the stomach. Glucagon-like peptide-1 (PG 78–107 amide) is secreted in man in response to physiological stimuli e.g. a mixed meal. Glucagon-like peptide-1, in concentrations corresponding to those observed in response to meals, strongly stimulates insulin secretion, in all mammals studied, even more potently than the gastric inhibitory peptide. Thus, glucagon-like peptide-1 fulfills the classic criteria for being a hormone and is likely to be a new incretin. The glucagon inhibitory effect of glucagon-like peptide-1 (PG 78–107 amide) probably further potentiates the effect of glucagon-like peptide-1 on glucose metabolism and distinguished this peptide from other intestinal peptides which have been proposed as incretins. Glucagon-like peptide-1 also inhibits gastric acid secretion and gastric emptying in man. The latter delays nutrient entry to the intestine and thereby diminishes meal-induced glucose excursions. Elevated plasma concentrations of immunoreactive glucagon-like peptide-1 have been reported in Type 2 (noninsulin-dependent) diabetic patients, however, the consequences of the elevation are not yet known. However, elevated levels of glucagon-like peptide-1 in patients with increased gastric emptying rate (post-gastrectomy syndromes) may be responsible for the exaggerated insulin secretion seen in these patients.  相似文献   
155.
Aerobactin production was examined by a bioassay in 467 Escherichia coli urinary strains from girls. All strains were of known OKH serotype. 139, 119 and 112 strains were isolates from pyelonephritis (Py), cystitis (Cy) and asymptomatic bacteriuria (ABU), respectively, and 97 were from fecal samples of healthy girls (FN). The incidence of aerobactin production was significantly higher among Py strains than among ABU and FN strains (P<0.001) and also significantly higher than among Cy strains (P<0.01). Aerobactin production was associated with serotype, e.g. the majority of 06K2H1 strains and of 016K1H6 were positive while e.g. the 06K13H1 strains were negative. There was no consistent pattern of coappearance of aerobactin and hemolysin.  相似文献   
156.
157.
158.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号