We showed that unloading markedly diminished the effects of IGF-I to activate its signaling pathways, and the disintegrin echistatin showed a similar block in osteoprogenitor cells. Furthermore, unloading decreased alphaVbeta3 integrin expression. These results show that skeletal unloading induces resistance to IGF-I by inhibiting activation of the IGF-I signaling pathways at least in part through downregulation of integrin signaling. INTRODUCTION: We have previously reported that skeletal unloading induces resistance to insulin-like growth factor-I (IGF-I) with respect to bone formation. However, the underlying mechanism remains unclear. The aim of this study was to clarify how skeletal unloading induces resistance to the effects of IGF-I administration in vivo and in vitro with respect to bone formation. MATERIALS AND METHODS: We first determined the response of bone to IGF-I administration in vivo during skeletal unloading. We then evaluated the response of osteoprogenitor cells isolated from unloaded bones to IGF-I treatment in vitro with respect to activation of the IGF-I signaling pathways. Finally we examined the potential role of integrins in mediating the responsiveness of osteoprogenitor cells to IGF-I. RESULTS: IGF-I administration in vivo significantly increased proliferation of osteoblasts. Unloading markedly decreased proliferation and blocked the ability of IGF-I to increase proliferation. On a cellular level, IGF-I treatment in vitro stimulated the activation of its receptor, Ras, ERK1/2 (p44/42 MAPK), and Akt in cultured osteoprogenitor cells from normally loaded bones, but these effects were markedly diminished in cells from unloaded bones. These results were not caused by altered phosphatase activity or changes in receptor binding to IGF-I. Inhibition of the Ras/MAPK pathway was more impacted by unloading than that of Akt. The disintegrin echistatin (an antagonist of the alphaVbeta3 integrin) blocked the ability of IGF-I to stimulate its receptor phosphorylation and osteoblast proliferation, similar to that seen in cells from unloaded bone. Furthermore, unloading significantly decreased the mRNA levels both of alphaV and beta3 integrin subunits in osteoprogenitor cells. CONCLUSION: These results indicate that skeletal unloading induces resistance to IGF-I by inhibiting the activation of IGF-I signaling pathways, at least in part, through downregulation of integrin signaling, resulting in decreased proliferation of osteoblasts and their precursors. 相似文献
OBJECTIVE: To evaluate the effect of hyperfractionated radiation therapy and concomitant chemotherapy for inoperable stage III non-small cell lung cancer (NSCLC). METHODS: Seventy patients were randomized equally into two group. The therapy group received radiotherapy with hyperfractionated radiation therapy combined with concomitant chemotherapy, and the control group was treated with chemotherapy only. RESULT: The overall response rate, including the rate of both complete (CR) and partial responses (PR), in the therapy group was 60.0% with a CR rate of 8.6%. The overall response rate in the control group was 40.0% with a CR rate of 5.7%. The difference in overall response rate was statistically significant between the two groups (P<0.05). The median survival time, 1- and 2-years survival rate were 12.8 months, 48.6%, and 25.7%, respectively, in the hyperfractionated radiotherapy group, and 9.4 months, 34.3%, and 17.1%, respectively, in the chemotherapeutic group (P 0.031). The major toxic effects of the chemotherapy were myelosuppression and radiation esophagitis. CONCLUSION: Hyperfractionated radiation therapy plus concomitant chemotherapy with paclitaxel for inoperable stage III NSCLC improves the short-term response of the patients, but fail to raise the survival rate. 相似文献
Background: Volatile anesthetic preconditioning (APC) protects against myocardial ischemia-reperfusion (IR) injury, but the precise mechanisms underlying this phenomenon remain undefined. To investigate the molecular mechanism of APC in myocardial protection, the activation of nuclear factor (NF) [kappa]B and its regulated inflammatory mediators expression were examined in the current study.
Methods: Hearts from male rats were isolated, Langendorff perfused, and randomly assigned to one of three groups: (1) the control group: hearts were continuously perfused for 130 min; (2) the IR group: 30 min of equilibration, 15 min of baseline, 25 min of ischemia, 60 min of reperfusion; and (3) the APC + IR group: 30 min of equilibration, 10 min of sevoflurane exposure and a 5-min washout, 25 min of global ischemia, 60 min of reperfusion. Tissue samples were acquired at the end of reperfusion. NF-[kappa]B activity was determined by electrophoretic mobility shift assay. The NF-[kappa]B inhibitor, I[kappa]B-[alpha], was determined by Western blot analysis. Myocardial inflammatory mediators, including tumor necrosis factor [alpha], interleukin 1, intercellular adhesion molecule 1, and inducible nitric oxide synthase, were also assessed by Western blot analysis.
Results: Nuclear factor [kappa]B-DNA binding activity was significantly increased at the end of reperfusion in rat myocardium, and cytosolic I[kappa]B-[alpha] was decreased. Supershift assay revealed the involvement of NF-[kappa]B p65 and p50 subunits. APC with sevoflurane attenuated NF-[kappa]B activation and reduced the expression of tumor necrosis factor [alpha], interleukin 1, intercellular adhesion molecule 1, and inducible nitric oxide synthase. APC also reduced infarct size and creatine kinase release and improved myocardial left ventricular developed pressure during IR. 相似文献