首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2157篇
  免费   139篇
  国内免费   20篇
耳鼻咽喉   4篇
儿科学   41篇
妇产科学   24篇
基础医学   385篇
口腔科学   29篇
临床医学   145篇
内科学   493篇
皮肤病学   74篇
神经病学   305篇
特种医学   73篇
外科学   188篇
综合类   4篇
一般理论   2篇
预防医学   101篇
眼科学   29篇
药学   143篇
中国医学   9篇
肿瘤学   267篇
  2024年   2篇
  2023年   18篇
  2022年   52篇
  2021年   72篇
  2020年   39篇
  2019年   61篇
  2018年   80篇
  2017年   55篇
  2016年   74篇
  2015年   84篇
  2014年   107篇
  2013年   106篇
  2012年   178篇
  2011年   190篇
  2010年   90篇
  2009年   107篇
  2008年   175篇
  2007年   138篇
  2006年   116篇
  2005年   103篇
  2004年   92篇
  2003年   84篇
  2002年   68篇
  2001年   32篇
  2000年   18篇
  1999年   32篇
  1998年   10篇
  1997年   6篇
  1996年   9篇
  1995年   6篇
  1994年   5篇
  1993年   11篇
  1992年   15篇
  1991年   19篇
  1990年   13篇
  1989年   16篇
  1988年   9篇
  1987年   5篇
  1986年   5篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1980年   5篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
  1961年   1篇
排序方式: 共有2316条查询结果,搜索用时 31 毫秒
81.
82.
Modern medicine has established three central antimicrobial therapeutic concepts: vaccination, antibiotics, and, recently, the use of active immunotherapy to enhance the immune response toward specific pathogens. The efficacy of vaccination and antibiotics is limited by the emergence of new pathogen strains and the increased incidence of antibiotic resistance. To date, immunotherapy development has focused mainly on cytokines. Here we report the successful therapeutic application of a complement component, a recombinant form of properdin (Pn), with significantly higher activity than native properdin, which promotes complement activation via the alternative pathway, affording protection against N. menigitidis and S. pneumoniae. In a mouse model of infection, we challenged C57BL/6 WT mice with N. menigitidis B-MC58 6 h after i.p. administration of Pn (100 µg/mouse) or buffer alone. Twelve hours later, all control mice showed clear symptoms of infectious disease while the Pn treated group looked healthy. After 16 hours, all control mice developed sepsis and had to be culled, while only 10% of Pn treated mice presented with sepsis and recoverable levels of live Meningococci. In a parallel experiment, mice were challenged intranasally with a lethal dose of S. pneumoniae D39. Mice that received a single i.p. dose of Pn at the time of infection showed no signs of bacteremia at 12 h postinfection and had prolonged survival times compared with the saline-treated control group (P < 0.0001). Our findings show a significant therapeutic benefit of Pn administration and suggest that its antimicrobial activity could open new avenues for fighting infections caused by multidrug-resistant neisserial or streptococcal strains.Pneumococcal and meningococcal infectious diseases remain a serious threat to public health. Streptococcus pneumoniae is the leading cause of community-acquired pneumonia and a major cause of otitis media, septicemia, and meningitis (1, 2). S. pneumoniae is responsible for ∼1.2 million deaths per year worldwide, with young children and immunocompromised patients at particular risk (3). Neisseria meningitidis causes epidemic bacterial meningitis and septicemia, with high mortality in children and young adults (4). The impact of meningococcal disease on human health is defined by both the risk and the severity of invasive meningococcal infections, with unacceptably high mortality rates, ranging from 10% in patients under optimal clinical therapy with the latest generation of antibiotics to up to 40% in patients with untreated septicemia. Almost one-third of those who survive invasive infections are left with long-term disabilities and long-term morbidity. Globally, the World Health Organization estimates that ∼1.2 million cases of invasive meningococcal infections occur annually, leading to more than 135,000 fatalities (5).Vaccination programs have reduced the rates of infection in developed countries, but neonates and elderly adults remain especially vulnerable (6, 7). The efficacy of vaccination is further limited by the emergence of new strains of S. pneumoniae and N. meningitidis.The complement system plays a major role in the host resistance to both pathogens (813). Complement is activated via three routes: the classical pathway, the lectin pathway, and the alternative pathway. Activation of the classical and lectin pathways is mediated by specific recognition molecules. Binding of C1q to the bacterial surface or the Fc region of antibody initiates the classical pathway. The lectin pathway is initiated by carbohydrate recognition molecules, including mannan-binding lectin, ficolins, and collectin 11, which bind directly to bacterial polysaccharides. Activation of the classical or lectin pathway leads to the formation of a C3 convertase (C4b2a), which splits C3 into the biologically active fragments, C3b and C3a. C3b can bind covalently to an activating surface, and hundreds of molecules of C3b can be deposited in close proximity to the C3 convertase complex. Accumulation of C3b close to C4b2a forms the classical pathway C5 convertase C4b2a(3b)n, in which C4b and C3b form a binding site for C5, orienting it for cleavage by C2a (14, 15).The mechanisms initiating the alternative pathway are less well understood. It is widely accepted that the alternative pathway maintains a continuous state of low-rate activation, which is held in check by potent negative regulators of activation on nonactivating surfaces, such as the surface of host cells. Turnover of the alternative pathway is initiated either by the provision of C3b via the classical pathway, the lectin pathway, or complement-independent proteolysis of C3 or by the spontaneous hydrolysis of C3 to form C3(H2O). C3b or C3(H2O) bind factor B to form either the C3bB or C3(H2O)B zymogen complex. In this complex, factor B is cleaved by factor D, releasing a Ba fragment. The activated C3bBb or C3(H2O)Bb fragments are themselves C3 convertases, which in turn cleave more C3 into C3a and C3b. Unchecked, the accumulation of C3b rapidly leads to the formation of more alternative pathway convertase complexes, resulting in a physiologically critical positive feedback mechanism—the amplification loop of complement activation (16). The alternative pathway thus amplifies complement activation initiated by any of the three pathways, making it an attractive target for therapeutic intervention designed to modulate complement-mediated immunity and/or inflammatory processes (17).Deposition of C3b and iC3b on the bacterial surface is a key step in the immune response against S. pneumoniae, because complement-mediated opsonisation is essential for clearance of S. pneumoniae through phagocytosis (8). Lysis of bacteria, owing to formation of the membrane attack complex complex, is the critically important biological activity of complement in the defense against N. meningitidis (10). Inherited or acquired deficiencies of the alternative pathway are associated with a high risk of recurrent bacterial infection. Factor B deficiencies significantly increase the risk of S. pneumoniae and Pseudomonas aeruginosa infection (9, 18). In a mouse model of properdin deficiency, the severity of polymicrobial peritonitis was significantly greater in deficient mice compared with their WT littermates (19). Properdin deficiency in humans has been associated with a high risk of meningococcal infections, especially with unusual infective serotypes, such as W-135 and Y (10, 20, 21). In addition, opsonophagocytosis of S. pneumoniae was found to be severely compromised in properdin-deficient sera, and reconstitution of properdin-deficient sera with purified properdin restored the opsonic activity and killing of S. pneumoniae by polymorphonuclear leukocytes (22, 23).Properdin is the only known positive physiological regulator of complement activation. It stabilizes and extends the half-life of the surface-bound C3 convertase C3bBb, and inhibits its degradation by factor I (2426). In their pioneering 1954 work, Pillemer et al. (26) first described properdin as a serum protein that mediates complement activation and antimicrobial activity in absence of antibodies.Properdin is present in serum at a concentration of ∼5–15 μg/mL (27). Unlike most other complement components, properdin is not synthesized in the liver but rather is expressed by other cells, including monocytes, T cells, mast cells, and granulocytes (19, 2830). Properdin monomers can assemble into dimers (P2), trimers (P3), and tetramers (P4), formed by head-to-tail association of monomers (each ∼53 kDa) (31, 32). Properdin aggregates, so-called “activated” properdin (Pn), are considered artificial higher-order oligomers formed during the purification of properdin from plasma or during subsequent freeze–thaw cycles (33). The functional activity of properdin increases with the size of the polymers formed (34). By increasing the half-life of the alternative pathway C3 convertase, properdin antagonizes the functional activity of complement factor H, an abundantly expressed plasma component, which promotes inactivation of the alternative pathway C3 convertase and of all C5 convertases of complement by accelerating the decay of these enzyme complexes through binding to complex-bound C3b and by serving as a cofactor in the factor I-mediated conversion of C3b to its inactive form, termed iC3b (35). Interestingly, the two pathogens used in this study were previously shown to express distinct microbial surface components that sequester factor H from host plasma, leading to resistance to the complement-mediated immune clearance of these pathogens (36, 37).In the present study, we addressed the role of the alternative pathway and the effect of administration of recombinant properdin as a tool for boosting alternative pathway activity to augment the immune response against S. pneumoniae or N. meningitidis.  相似文献   
83.
84.
The relation between attractiveness and motor affordance is a key topic in design and has not yet been investigated electrophysiologically. In this respect, action affordance and attractiveness represent two crucial dimensions in object processing (specifically for tools). In light of this evidence, Event Related Potentials (ERPs) enabled us to gain new insights into the time course of the interaction between these two dimensions during an explicit tool evaluation task.  相似文献   
85.
A hexanucleotide repeat expansion in the chromosome 9 Open Reading Frame 72 gene (C9ORF72) has recently been reported to be cause of familial amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Nevertheless, in the last few years this mutation has been found to be associated with heterogeneous phenotypes, including multiple sclerosis (MS) in concurrence with amyotrophic lateral sclerosis. In this study, we sought to evaluate the presence of the C9ORF72 repeat expansion in a cohort consisting of 314 patients with MS and 222 control subjects. No pathogenic expansion was found in MS and control populations, suggesting that C9ORF72 does not play a major role in MS pathogenesis.  相似文献   
86.
A causative association was recently demonstrated between homozygous TREM2 mutations and frontotemporal dementia (FTD)-like syndrome and between heterozygous TREM2 exon2 genetic variations and late-onset Alzheimer's disease (AD). The objective of this study was to evaluate whether heterozygous TREM2 genetic variations might be associated to the risk of FTD. TREM2 exon 2 was sequenced in a group of 1030 subjects—namely, 352 patients fulfilling clinical criteria for FTD, 484 healthy control subjects (HCs), and 194 patients with AD. The mutation frequency and the associated clinical characteristics were analyzed. We identified 8 missense and nonsense mutations in TREM2 exon 2 in 24 subjects. These mutations were more frequent in patients with FTD than in HCs (4.0% vs. 1.0%, p = 0.005). In particular, TREM2 Q33X, R47H, T66M, and S116C mutations were found in FTD and were absent in HCs. These mutations were associated with either the semantic variant of primary progressive aphasia or the behavioral variant FTD phenotypes. The FTD and AD groups were not significantly different with regard to TREM2 genetic variation frequency (AD: 2.6%, p = 0.39). Heterozygous TREM2 mutations modulate the risk of FTD in addition to increasing susceptibility to AD. Additional studies are warranted to investigate the possible role of these mutations in the pathogenesis of neurodegenerative disorders.  相似文献   
87.
Dengue is currently one of the most important arthropod-borne diseases, causing up to 25,000 deaths annually. There is currently no vaccine to prevent dengue virus infection, which needs a tetravalent vaccine approach. In this work, we describe the cloning and expression in Escherichia coli of envelope domain III-capsid chimeric proteins (DIIIC) of the four dengue serotypes as a tetravalent dengue vaccine candidate that is potentially able to generate humoral and cellular immunity. The recombinant proteins were purified to more than 85 % purity and were recognized by anti-dengue mouse and human sera. Mass spectrometry analysis verified the identity of the proteins and the correct formation of the intracatenary disulfide bond in the domain III region. The chimeric DIIIC proteins were also serotype-specific, and in the presence of oligonucleotides, they formed aggregates that were visible by electron microscopy. These results support the future use of DIIIC recombinant chimeric proteins in preclinical studies in mice for assessing their immunogenicity and efficacy.  相似文献   
88.
89.
The Ospedale Maggiore, known as Ca’ Granda, was founded in 1456 by will of Francesco Sforza, Duke of Milan, and was considered for almost five centuries a model for Milanese, Italian and even European healthcare. Attracting patients from all over Europe, the Ca’ Granda distinguished itself for the introduction of new treatments and innovative health reforms. In the burial ground of the hospital still lie the bodies of the deceased patients, who came from the poorest strata of the population. The study of their remains aims to give back a general identity and a story to each of these persons as well as reconstruct a fraction of the sixteenth century population of Milano as concerns lifestyle and disease and examine practises and therapy of this exceptional hospital. It is estimated that about two million commingled bones and articulated skeletons rest in the crypt, together with other types of findings (e.g., ceramic, coins, clothing). These remains are the object of a large project involving various disciplines ranging from humanities to hard sciences. The aim of this paper is to bring this historical gem to the attention of scholars and provide a glimpse of what its contents have already revealed.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号