首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   1篇
耳鼻咽喉   1篇
基础医学   4篇
内科学   3篇
外科学   4篇
肿瘤学   22篇
  2022年   1篇
  2020年   1篇
  2013年   3篇
  2012年   13篇
  2011年   9篇
  2010年   1篇
  2008年   2篇
  2006年   3篇
  2003年   1篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
21.
Our expression signatures of human cancer including bladder cancer (BC) revealed that the expression of microRNA-1 (miR-1) and microRNA-133a (miR-133a) is significantly reduced in cancer cells. In the human genome, miR-1 and miR-133a are located on the same chromosomal region (miR-1-2 and miR-133a-1 on 18q11.2, and miR-1-1 and miR-133a-2 on 20q13.33) called cluster. In this study, we identified the novel molecular targets commonly regulated by miR-1 and miR-133a in BC. Genome-wide molecular target search and luciferase reporter assays showed that prothymosin-α (PTMA) and purine nucleoside phosphorylase (PNP) are directly regulated by miR-1 and miR-133a. Silencing of these two genes significantly inhibited cell proliferation and invasion, and increased apoptosis in BC cells. Immunohistochemistry showed that PTMA expression levels were significantly higher in BC compared to normal bladder epitheliums. PTMA and PNP were identified as new target genes regulated by the miR-1 and miR-133a cluster in BC. These genes may function as oncogenes contributing to cell proliferation and invasion in BC. Tumor suppressive miR-1 and miR-133a-mediated novel molecular targets may provide new insights into the potential mechanisms of BC oncogenesis.  相似文献   
22.
An 84-year-old woman was hospitalized in hemodynamic shock due to type A acute aortic dissection (AAD) complicated by pulseless tamponade. She was treated conservatively as her family refused emergency surgery. In spite of warning her family that lack of intervention may possibly lead to an early death, she gradually improved and went home without any further problems. Emergency surgery for octogenarians remains controversial, however. We report the first surviving, non-operative case of an octogenarian with pulseless shock due to aortic dissection.  相似文献   
23.
The glutathione S-transferase P1 (GSTP1) protein plays several critical roles in both normal and neoplastic cells, including phase II xenobiotic metabolism, stress responses, signaling and apoptosis. Overexpression of GSTP1 has been observed in many types of cancer, including head and neck squamous cell carcinoma (HNSCC). However, the role of GSTP1 in HNSCC is not well understood. We investigated the role of GSTP1 in two HNSCC cell lines, HSC3 and SAS. Silencing of GSTP1 revealed that cancer cell proliferation was significantly decreased in both cell lines. In addition, the frequency of apoptotic cells increased following si-GSTP1 transfection of HSC3 and SAS cell lines. Growing evidence suggests that microRNAs (miRNAs) negatively regulate gene expression and can function as oncogenes or tumor suppressors in human cancer. Based on the results of web-based searches, miR-133α is a candidate miRNA targeting GSTP1. Down-regulation of miR-133α has been reported in many types of human cancer, including HNSCC. Transient transfection of miR-133α repressed the expression of GSTP1 at both the mRNA and protein levels. The signal from a luciferase reporter was significantly decreased at one miR-133α target site at the 3'UTR of GSTP1, suggesting that miR-133α directly regulates GSTP1. Our data indicate that GSTP1 may have an oncogenic function and may be regulated by miR-133α, a tumor suppressive miRNA in HNSCC. The identification of a novel oncogenic pathway could provide new insights into potential mechanisms of HNSCC carcinogenesis.  相似文献   
24.
25.
26.
27.
The aim of this study was to determine whether histone acetylation regulates tumor suppressive microRNAs (miRNAs) in esophageal squamous cell carcinoma (ESCC) and to identify genes which are regulated by these miRNAs. We identified a miRNA that was highly upregulated in an ESCC cell line by cyclic hydroxamic acid-containing peptide 31 (CHAP31), one of the histone deacetylase inhibitors (HDACIs), using a miRNA array analysis. miR-375 was strongly upregulated by CHAP31 treatment in an ESCC cell line. The expression levels of the most upregulated miRNA, miR-375 were analyzed by quantitative real-time PCR in human ESCC specimens. The tumor suppressive function of miR-375 was revealed by restoration of miR-375 in ESCC cell lines. We performed a microarray analysis to identify target genes of miR-375. The mRNA and protein expression levels of these genes were verified in ESCC clinical specimens. LDHB and AEG-1/MTDH were detected as miR?375-targeted genes. The restoration of miR-375 suppressed the expression of LDHB and AEG-1/MTDH. The ESCC clinical specimens exhibited a high level of LDHB expression at both the mRNA and protein levels. A loss-of-function assay using a siRNA analysis was performed to examine the oncogenic function of the gene. Knockdown of LDHB by RNAi showed a tumor suppressive function in the ESCC cells. The correlation between gene expression and clinicopathological features was investigated by immunohistochemistry for 94 cases of ESCC. The positive staining of LDHB correlated significantly with lymph node metastasis and tumor stage. It also had a tendency to be associated with a poor prognosis. Our results indicate that HDACIs upregulate miRNAs, at least some of which act as tumor suppressors. LDHB, which is regulated by the tumor suppressive miR-375, may therefore act as an oncogene in ESCC.  相似文献   
28.
Our previous studies suggested that microRNA (miR)-574-3p is a candidate tumor suppressor microRNA (miRNA) in human bladder cancer (BC). Among 17 down-regulated miRNAs, miR-574-3p is located on chromosome 4p14 where we had identified a chromosomal loss region by array-CGH in BC cell lines. MiR-574-3p expression was down-regulated in BC cell lines. Gain-of-function analysis revealed that cell proliferation, migration and invasion were significantly inhibited in miR?574?3p-transfected BC cell lines. Flow cytometry analysis showed that cell apoptosis was induced in miR-574-3p transfectants. Oligo microarray analysis suggested that the mesoderm development candidate 1 (MESDC1) gene was a target gene in miR-574-3p transfectants. Luciferase assays revealed that miR?574?3p was directly bound to MESDC1 mRNA. MESDC1 is predicted to be a novel actin-binding protein located on chromosome 15q13. Although the gene is conserved among many species, its functional role is still unknown in both human malignancies and normal tissues. Loss-of-function studies demonstrated that cell proliferation, migration and invasion were significantly inhibited in si-MESDC1-transfected BC cell lines. Flow cytometry analysis showed that apoptosis was induced in si-MESDC1 transfectants. We are the first to demonstrate that miR-574-3p is a miRNA with tumor suppressor function and that MESDC1 (which has a potential oncogenic function in BC) may be targeted by miR-574-3p.  相似文献   
29.
Background

Here, we report the results of the Japanese subgroup of the phase 3 KEYNOTE-048 study of pembrolizumab alone, pembrolizumab plus platinum and 5-fluorouracil (pembrolizumab–chemotherapy), or cetuximab plus platinum and 5-fluorouracil (EXTREME) in previously untreated recurrent/metastatic (R/M) head and neck squamous cell carcinoma (HNSCC).

Methods

Primary end points were overall survival (OS) and progression-free survival (PFS). Efficacy was evaluated in patients with PD-L1 combined positive score (CPS) ≥ 20 and ≥ 1 and the total Japanese subgroup (n = 67).

Results

At data cutoff (25 February 2019), pembrolizumab led to longer OS versus EXTREME in the PD-L1 CPS ≥ 20 subgroup (median, 28.2 vs. 13.3 months; HR, 0.29 [95% CI 0.09–0.89]) and to similar OS in the total Japanese (23.4 vs. 13.6 months; HR, 0.51 [95% CI 0.25–1.05]) and CPS ≥ 1 subgroups (22.6 vs. 15.8 months; HR, 0.66 [95% CI 0.31–1.41]). Pembrolizumab–chemotherapy led to similar OS versus EXTREME in the PD-L1 CPS ≥ 20 (median, 18.1 vs. 15.8 months; HR, 0.72 [95% CI 0.23–2.19]), CPS ≥ 1 (12.6 vs. 15.8 months; HR, 1.19 [95% CI 0.55–2.58]), and total Japanese subgroups (12.6 vs. 13.3 months; unadjusted HR, 1.10 [95% CI 0.55–2.22]). Median PFS was similar for pembrolizumab and pembrolizumab–chemotherapy versus EXTREME in all subgroups. Grades 3–5 treatment-related adverse events occurred in 5 (22%), 19 (76%), and 17 (89%) patients receiving pembrolizumab, pembrolizumab–chemotherapy, and EXTREME, respectively. One patient receiving pembrolizumab–chemotherapy died because of treatment-related pneumonitis.

Conclusion

These results support the use of first-line pembrolizumab and pembrolizumab–chemotherapy for Japanese patients with R/M HNSCC.

Clinical trial registry ClinicalTrials.gov, NCT02358031.

  相似文献   
30.

Background:

Our recent studies of microRNA (miRNA) expression signatures demonstrated that microRNA-29s (miR-29s; miR-29a/b/c) were significantly downregulated in head and neck squamous cell carcinoma (HNSCC) and were putative tumour-suppressive miRNAs in human cancers. Our aim in this study was to investigate the functional significance of miR-29s in cancer cells and to identify novel miR-29s-mediated cancer pathways and responsible genes in HNSCC oncogenesis and metastasis.

Methods:

Gain-of-function studies using mature miR-29s were performed to investigate cell proliferation, migration and invasion in two HNSCC cell lines (SAS and FaDu). To identify miR-29s-mediated molecular pathways and targets, we utilised gene expression analysis and in silico database analysis. Loss-of-function assays were performed to investigate the functional significance of miR-29s target genes.

Results:

Restoration of miR-29s in SAS and FaDu cell lines revealed significant inhibition of cancer cell migration and invasion. Gene expression data and in silico analysis demonstrated that miR-29s modulated the focal adhesion pathway. Moreover, laminin γ2 (LAMC2) and α6 integrin (ITGA6) genes were candidate targets of the regulation of miR-29s. Luciferase reporter assays showed that miR-29s directly regulated LAMC2 and ITGA6. Silencing of LAMC2 and ITGA6 genes significantly inhibited cell migration and invasion in cancer cells.

Conclusion:

Downregulation of miR-29s was a frequent event in HNSCC. The miR-29s acted as tumour suppressors and directly targeted laminin–integrin signalling. Recognition of tumour-suppressive miRNA-mediated cancer pathways provides new insights into the potential mechanisms of HNSCC oncogenesis and metastasis and suggests novel therapeutic strategies for the disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号