首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   564篇
  免费   32篇
  国内免费   1篇
儿科学   17篇
妇产科学   6篇
基础医学   67篇
口腔科学   17篇
临床医学   40篇
内科学   106篇
皮肤病学   3篇
神经病学   20篇
特种医学   22篇
外科学   101篇
综合类   10篇
预防医学   24篇
眼科学   30篇
药学   79篇
中国医学   15篇
肿瘤学   40篇
  2024年   1篇
  2023年   4篇
  2022年   22篇
  2021年   26篇
  2020年   12篇
  2019年   11篇
  2018年   15篇
  2017年   16篇
  2016年   17篇
  2015年   12篇
  2014年   24篇
  2013年   29篇
  2012年   51篇
  2011年   34篇
  2010年   30篇
  2009年   15篇
  2008年   41篇
  2007年   45篇
  2006年   39篇
  2005年   36篇
  2004年   15篇
  2003年   21篇
  2002年   17篇
  2001年   7篇
  2000年   8篇
  1999年   7篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   8篇
  1989年   2篇
  1988年   2篇
  1987年   4篇
  1986年   1篇
  1984年   2篇
  1979年   2篇
  1976年   3篇
  1973年   2篇
  1971年   2篇
  1968年   1篇
  1915年   1篇
排序方式: 共有597条查询结果,搜索用时 31 毫秒
11.
In the present work, a hydroxyapatite anchored nitrogen-doped three-dimensional graphene (HAp-N3DG) skeletal network (foam) based nanostructured ceramic framework (CF) was developed through a polymer-assisted solvothermal route. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) studies reveal that the nano sized 0D HAp particles are anchored on the N3DG skeletal network with an average size of less than 50 nm. EDX and X-ray photoelectron spectroscopy (XPS) analysis confirmed the presence of Ca, P, O, N, and C. In addition, XPS analysis reveals the existence of N–C bonds in the prepared sample. The X-ray diffraction (XRD) patterns indicate the presence of hexagonal phase hydroxyapatite and the calculated average crystallite size was found to be 12 nm. The developed HAp-N3DG foam based nanostructured CF was found to have a mesoporous structure and the measured specific surface area (SSA) and the mean pore diameter were found to be 64.73 m2 g−1 and 23.6 nm, respectively. Electrochemical analysis shows that HAp anchored on nitrogen-doped 3D graphene foam based nanostructured CF has moderate electrochemical activity towards lithium ion charge/discharge. In addition, the prepared material showed adsorption activity values of 204.89 mg g−1 and 243.89 mg g−1 for the volatile organic compounds (VOCs) benzene and toluene, respectively. The present findings suggest that the newly developed HAp anchored nitrogen-doped 3DG (HAp-N3DG) skeletal network (foam) based nanostructured CF material can be used in energy devices and in the removal of volatile organic compounds. Moreover, the present study initiates a new kind of approach in energy device (lithium ion battery-LIB) research and in the removal of VOCs.

Hydroxyapatite anchored nitrogen-doped three-dimensional graphene (HAp-N3DG) skeletal network (foam) based nanostructured ceramic framework (CF) was developed through a polymer-assisted solvothermal route.  相似文献   
12.
Mimicking porous topography of natural extracellular matrix is advantageous for successful regeneration of damaged tissues or organs. Nanotechnology being one of the most promising and growing technology today shows an extremely huge potential in the field of tissue engineering. Nanofibrous structures that mimic the native extracellular matrix and promote the adhesion of various cells are being developed as tissue‐engineered scaffolds for skin, bone, vasculature, heart, cornea, nervous system, and other tissues. A range of novel biocomposite materials has been developed to enhance the bioactive or therapeutic properties of these nanofibrous scaffolds via surface modifications, including the immobilization of functional cell‐adhesive ligands and bioactive molecules such as drugs, enzymes, and cytokines. In skin tissue engineering, usage of allogeneic skin is avoided to reestablish physiological continuity and also to address the challenge of curing acute and chronic wounds, which remains as the area of exploration with various biomimetic approaches. Two‐dimensional, three‐dimensional scaffolds and stem cells are presently used as dermal regeneration templates for the treatment of full‐thickness skin defects resulting from injuries and severe burns. The present review elaborates specifically on the fabrication of nanofibrous structured strategies for wound dressings, wound healing, and controlled release of growth factors for skin tissue regeneration.  相似文献   
13.
Studies were undertaken to evaluate ozone (O(3)) for induction of resistance against Cucumber mosaic virus in Lycopersicon esculentum cv. PKM1 (tomato) plants. Callus induced from tomato leaf explants on Murashige & Skoog's (MS) medium supplemented with benzyladenine (8.82 microM) were treated with different concentrations of ozone T(1), T(2), T(3) and for control (C), filtered air was supplied. Regeneration of shoots was obtained by culturing ozone treated calli on MS medium containing 17.3 microM benzyladenine. The frequency of regeneration of tomato plants from the callus were T(1)=79%, T(2)=61%, T(3)=42%, but for control 90% regeneration was obtained. Regenerated plants were rooted in half strength MS medium supplemented with 10 microM indole-butyric acid and successfully acclimatized. The plants regenerated from ozone treated callus are referred to as T(1), T(2) and T(3) plants, which hold remarkably increased soluble phenolic content compared to the control plants. All the plants were challenged by mechanical inoculation with Cucumber mosaic virus, shows disease incidence ranged from T(1)=32%, T(2)=56%, T(3)=78% and C=94%. Remarkable increase in activities of salicylic acid (SA), phenylalanine ammonia-lyase (PAL) and peroxidase (POX) were detected after Cucumber mosaic virus inoculation, in foliar extracts of T(1) plants than T(2) and T(3), compared to the control plants.  相似文献   
14.
15.
16.
Two ternary copper(II) complexes of dl-threonine and polypyridyl ligands with formula of [Cu(Thr)(Byp)Cl]·H2O (1) and [Cu(Thr)(Phen)H2O]Cl·2H2O (2) were synthesized. The complexes were characterized by spectral (NMR, FT-IR, and UV–Vis), CHN elemental analysis and have been structurally elucidated by X-ray crystallography. Both of the complexes formed slightly distorted square-pyramidal coordination geometry. The electronic absorption spectra of the complexes showed a very low intensity dd electronic band in the range of 610–620 nm in Tris–HCl/NaCl (5:5 mM) pH 7.2 buffer solution. The DNA binding interaction with calf-thymus DNA (CT-DNA) was investigated by electronic absorption spectral titration and viscosity measurements. The results revealed that the phenanthroline complex (2) interact with CT-DNA through intercalation while bipyridyl complex (1) through the groove binding mode. The calculated intrinsic binding constant (K b) of (1) and (2) were 0.5 and 4.4 × 105 M?1, respectively. Both the complexes were found to promote efficient DNA cleavage activities at low concentration in the presence of H2O2. The results showed that (2) has the highest DNA binding and nuclease activity. Furthermore, both the complexes were tested against human colon cancer (HCT 116) and breast cancer (MCF-7) cell lines and showed a dose-dependent antiproliferation effect.  相似文献   
17.
Haloperidol, an antipsychotic drug, leads to the development of a behavioural state called catalepsy, in which the animal is not able to correct an externally imposed posture. In the present study we have attempted to evaluate the anticataleptic effect of Tribulus terrestris on haloperidol-induced catalepsy in albino mice. Mice were allocated to four groups, each group containing six animals. Both, the test drug, Tribulus terrestris and the standard drug trihexyphenidyl were uniformly suspended in 1% gum acacia solution. Catalepsy was induced in mice with haloperidol (1.0 mg/kg, intraperitoneally). The first group received the vehicle (10 ml/kg, orally), the second group received trihexyphenidyl (10 mg/kg, orally) and the remaining two groups received Tribulus terrestris (100, 200 mg/kg, orally). The animals were assessed after single and repeated dose administration for ten days, 30 min prior to haloperidol, using standard bar test. The result of the present study demonstrates Tribulus terrestris has a protective effect against haloperidol-induced catalepsy, which is comparable to the standard drug used for the same purpose. Our study indicates Tribulus terrestris can be used to prevent haloperidol-induced extrapyramidal side effects.  相似文献   
18.
A novel series of 1‐(thiophen‐2‐yl)‐9H‐pyrido [3,4‐b]indole derivatives were synthesized using DL‐tryptophan as starting material. All the compounds were characterized by spectral analysis such as 1H NMR, Mass, IR, elemental analysis and evaluated for inhibitory potency against HIV‐1 replication. Among the reported analogues, compound 7g exhibited significant anti‐HIV activity with EC50 0.53 μm and selectivity index 483; compounds 7e , 7i , and 7o displayed moderate activity with EC50 3.8, 3.8, and 2.8 μm and selectivity index >105, >105, and 3.85, respectively. Interestingly, compound 7g inhibited p24 antigen expression in acute HIV‐1IIIB infected cell line C8166 with EC50 1.1 μm . In this study, we also reported the Lipinski rule of 5 parameters, predicted toxicity profile, drug‐likeness, and drug score of the synthesized analogues.  相似文献   
19.
The single-point incremental forming process (SPIF) is one of the emerging manufacturing methods because of its flexibility in producing the desired complex shapes with higher formability at low-cost compared to traditional sheet forming methods. In this research work, we experimentally investigate the forming process to determine the influence of process parameters and their contribution to enhancing the formability without causing a fracture by combining the design of experiments (DOE), grey relational analysis (GRA), and statistical analysis of variance (ANOVA). The surface morphology and the energy dispersive X-ray spectroscopy (EDS) method are used to perform elemental analysis and examine the formed parts during three forming stages. The DOE procedure, a central composite design with a face-centered option, is devised for AA3003-H18 Al alloy sheet for modeling the real-time experiments. The response surface methodology (RSM) approach is adopted to optimize the forming parameters and recognize the optimal test conditions. The statistically developed model is found to have agree with the test measurements. The prediction model’s capability in R2 is computed as 0.8931, indicating that the fitted regression model adequately aligns with the estimated grey relational grade (GRG) data. Other statistical parameters, such as root mean square error (RMSE) and average absolute relative error (AARE), are estimated as 0.0196 and 2.78%, respectively, proving the proposed regression model’s overall closeness to the measured data. In addition, the prediction error range is identified as −0.05 to 0.05, which is significantly lower and the residual data are distributed normally in the design space with variance and mean of 3.3748 and −0.1232, respectively. ANOVA is performed to understand the adequacy of the proposed model and the influence of the input factors on the response variable. The model parameters, including step size, feed rate, interaction effect of tool radius and step size, favorably influence the response variable. The model terms X2 (0.020 and 11.30), X3 (0.018 and 12.16), and X1X2 (0.026 and 9.72) are significant in terms of p-value and F-value, respectively. The microstructural inspection shows that the thinning behavior tends to be higher as forming depth advances to its maximum; the deformation is uniform and homogeneous under the predefined test conditions.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号