109.
Introduction: Retinopathy remains as one of the most feared blinding complications of diabetes, and with the prevalence of this life-long disease escalating at an alarming rate, the incidence of retinopathy is also climbing. Although the cutting edge research has identified many molecular mechanisms associated with its development, the exact mechanism how diabetes damages the retina remains obscure, limiting therapeutic options for this devastating disease.
Areas covered: This review focuses on the central role of mitochondrial dysfunction/damage in the pathogenesis of diabetic retinopathy, and how damaged mitochondria initiates a self-perpetuating vicious cycles of free radicals. We have also reviewed how mitochondria could serve as a therapeutic target, and the challenges associated with the complex double mitochondrial membranes and a well-defined blood-retinal barrier for optimal pharmacologic/molecular approach to improve mitochondrial function.
Expert opinion: Mitochondrial dysfunction provides many therapeutic targets for ameliorating the development of diabetic retinopathy including their biogenesis, DNA damage and epigenetic modifications. New technology to enhance pharmaceuticals uptake inside the mitochondria, nanotechnology to deliver drugs to the retina, and maintenance of mitochondrial homeostasis via lifestyle changes and novel therapeutics to prevent epigenetic modifications, could serve as some of the welcoming avenues for a diabetic patient to target this sight-threatening disease. 相似文献