首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2573篇
  免费   145篇
  国内免费   10篇
耳鼻咽喉   27篇
儿科学   83篇
妇产科学   29篇
基础医学   319篇
口腔科学   35篇
临床医学   325篇
内科学   543篇
皮肤病学   26篇
神经病学   136篇
特种医学   26篇
外科学   188篇
综合类   50篇
一般理论   2篇
预防医学   337篇
眼科学   51篇
药学   351篇
中国医学   50篇
肿瘤学   150篇
  2024年   5篇
  2023年   51篇
  2022年   179篇
  2021年   270篇
  2020年   131篇
  2019年   126篇
  2018年   119篇
  2017年   86篇
  2016年   93篇
  2015年   70篇
  2014年   110篇
  2013年   159篇
  2012年   179篇
  2011年   190篇
  2010年   87篇
  2009年   59篇
  2008年   95篇
  2007年   80篇
  2006年   74篇
  2005年   64篇
  2004年   75篇
  2003年   67篇
  2002年   62篇
  2001年   20篇
  2000年   15篇
  1999年   25篇
  1998年   15篇
  1997年   34篇
  1996年   10篇
  1995年   7篇
  1994年   10篇
  1993年   13篇
  1992年   9篇
  1991年   11篇
  1990年   9篇
  1989年   4篇
  1988年   13篇
  1987年   10篇
  1986年   4篇
  1982年   7篇
  1981年   7篇
  1980年   9篇
  1979年   13篇
  1978年   5篇
  1977年   3篇
  1976年   4篇
  1975年   5篇
  1974年   7篇
  1973年   3篇
  1972年   5篇
排序方式: 共有2728条查询结果,搜索用时 812 毫秒
991.
Association of glutathione S-transferase (GST) M1 and T1 deletions with benign prostate hyperplasia (BPH) and prostate cancer is well reported. These enzymes metabolize numerous toxins thus protecting from oxidative injury. Oxidative stress has been associated with development of BPH and prostate cancer. The present study was designed to analyze role of GST deletions in development of oxidative stress in these subjects. GSTs are responsible for metabolism of toxins present in tobacco therefore effect of tobacco usage in study groups was also studied. Three groups of subjects: BPH (57 patients), prostate cancer (53 patients) and controls (46 subjects) were recruited. Genotyping was done using a multiplex polymerase chain reaction (PCR) method. Malondialdehyde (MDA) levels as marker of oxidative stress were estimated by measuring thiobarbituric acid reactive substance (TBARS) in plasma. Based on genotyping, subjects were categorized into: GSTM1+/GSTT1+, GSTM1-/GSTT1+, GSTM1+/GSTT1- and GSTM1-/GSTT1-. Significantly higher plasma MDA levels were noticed in GSTM1-/GSTT1- as compared to GSTM1+/GSTT1+ in all study groups. Double deletion (GSTM1-/GSTT1-) is associated with higher oxidative stress which might play a role in the pathogenesis of BPH and prostate cancer. However, other markers of oxidative stress should be analyzed before any firm conclusion.  相似文献   
992.
Cystatin C (CysC), an endogenous cysteine protease inhibitor, has been implicated in the apoptosis and differentiation processes of neuronal cells. In this study, we have investigated the pathway involved in the process. A human neuronal hybridoma cell line (A1 cell) was treated with CysC in both undifferentiated and retinoic acid (RA)-induced differentiated conditions, which decreased overall process length in both conditions. Also, CysC increased apoptotic cell number time-dependently, as revealed by TUNEL assay. Western blot analysis demonstrated that in differentiated A1 cells, CysC treatment decreased Bcl-2 and increased active caspase-9 protein level time-dependently. Immunocytochemistry results revealed that, CysC treatment significantly increased active form of Bax expressing cell number, which co-localized with mitochondria. Mitogen activated protein (MAP) kinase inhibition experiments showed that Bax mRNA induction and Bcl-2 mRNA inhibition by CysC treatment were c-Jun N-terminal kinase (JNK)-dependent. After RA-induced differentiation, choline acetyltransferase (ChAT) and neurofilament (NF) mRNA levels were increased in A1 cells. CysC treatment inhibited NF mRNA level in both undifferentiated and RA-differentiated, and increased TH mRNA in differentiated A1 neurons. Analysis of signal transduction pathway demonstrated that TH gene induction was also JNK-dependent. Thus, our results demonstrated the significance of JNK-dependent pathways on CysC-induced apoptosis and TH gene expression in neuronal cells, which might be an important target in the management of CysC dependent neurodegenerative processes.  相似文献   
993.
Abstract

Germidine and germerine, the Veratrum alkaloids lowered blood pressure accompanied with positive chronotropy and inotropy in mice. Germerine was more potent than germidine in both blood-pressure lowering and positive inotropy, whereas veratridine produced negative chronotropy and positive inotropy. An acyl group (an acetyl or a 2-methylbutyroyl group) at 3-O-R1 position and a 2-methylbutyroyl group at 15-O-R2 position in germine were important to produce the positive inotropy and chronotropy. The presence of a veratroyl group at 3-O-R1 position and a free hydroxyl group at 15-O-R2 position may be essential to produce the negative chronotropy by veratridine. The positive inotropy by germidine and veratridine may be due to TTX-resistant Na+ channel activation.  相似文献   
994.
Eleven strains of acyclovir (ACV)-resistant herpes simplex virus type 1 (HSV-1) were generated from HSV-1 clinical isolates by exposure to ACV. Genotype of the thymidine kinase (TK) and DNA polymerase (pol) genes from these mutants were further analyzed. Genotypic analysis revealed four non-synonymous mutations in TK gene associated with gene polymorphism and two to three non-synonymous mutations in DNA pol gene. Seven and six strains contained at least one resistance-associated mutation at TK and DNA pol gene, respectively. Resistance-associated mutations within the TK gene consisted of 64% of non-synonymous frameshift mutations within the homopolymer region of G’s and C’s, and 36% of non-synonymous nucleotide substitutions of the conserved gene region (C336Y, R51W and R222H), nucleotide that produced stop codon (L288Stop) and two amino acid substitutions outside the conserved region (E39G & L208F). There were 10 non-synonymous amino acid substitutions located outside the conserved region with the unclear significance to confer resistance observed. Resistance-associated mutations in DNA pol gene include insertion of G at the homopolymer region of G’s (794–797) and amino acid substitutions inside (V621S) or outside (H1228D) the conserved region. In silico analysis of the mutated TK (C336Y, R51W and L208F), and DNA pol (V621S and H1228D) suggested structural changes that might alter the stability of these proteins. However, there were several mutations with unclear significance to confer ACV-resistance identified, especially mutations outside the conserved region.  相似文献   
995.
An overview of vitamins D3 and E suggests micronutrient deficiency contributes to type 2 diabetes mellitus (T2DM). A case-control study was conducted to determine the status of plasma vitamins D3 and E isomers amongst diabetic Malaysians. Two groups were recruited for participation, one comprising fifty diabetic subjects (DM) and one comprising fifty non-diabetic (non-DM) subjects, in order to assess their plasma vitamin D3, calcium and vitamin E status. Glycaemic status (haemoglobin A1c, HbA1c; fasting blood glucose, FBG; C-Peptide) and lipid profiles (total cholesterol, TC; triglycerides, TG; low-density lipoprotein-cholesterol, LDL-C; high-density lipoprotein-cholesterol, HDL-C) were assessed, followed by anthropometric measurements. The Mann–Whitney U-test, Kruskal–Wallis and Spearman’s correlation coefficient were used to elucidate the association between levels of plasma vitamins D3 and E and T2DM. The vitamin D3 deficiency group (<20 ng/mL) showed a significant correlation (p < 0.05) with glycaemic status (HbA1c and FBG) and lipid profiles (HDL-C, LDL and TC). Spearman’s correlation demonstrated that vitamin D3 status is strongly correlated with HDL levels (p < 0.05). Similarly, plasma total vitamin E levels >4.9 μg/mL revealed significantly different FBG, HbA1c, C-Peptide, LDL, HDL and TC levels across both groups. Moreover, family history, smoking, waist circumference and HbA1c levels demonstrated a significant association (p < 0.05) with levels of vitamins D and E but not FBG and lipid profiles. This could be because the pre-diabetic status among the non-DM group influenced the outcomes of this study.  相似文献   
996.
Vitiligo is a multifactorial polygenic disorder with a complex pathogenesis, linked with both genetic and non‐genetic factors. The precise modus operandi for vitiligo pathogenesis has remained elusive. Theories regarding loss of melanocytes are based on autoimmune, cytotoxic, oxidant–antioxidant and neural mechanisms. Reactive oxygen species (ROS) in excess have been documented in active vitiligo skin. Numerous proteins in addition to tyrosinase are affected. It is possible that oxidative stress is one among the main principal causes of vitiligo. However, there also exists ample evidence for altered immunological processes in vitiligo, particularly in chronic and progressive conditions. Both innate and adaptive arms of the immune system appear to be involved as a primary event or as a secondary promotive consequence. There is speculation on the interplay, if any, between ROS and the immune system in the pathogenesis of vitiligo. The article focuses on the scientific evidences linking oxidative stress and immune system to vitiligo pathogenesis giving credence to a convergent terminal pathway of oxidative stress–autoimmunity‐mediated melanocyte loss.  相似文献   
997.
In this paper, a method was introduced for the fabrication of vertically and spatially-controlled peptide nanostructures that enhance cell adhesion, proliferation, spreading on artificial surfaces. The RGD nanostructures with different heights were fabricated on gold surfaces by self-assembly technique through a nanoporous alumina mask composed of nanoscale-controlled pores. Pore diameter and spatial distribution were controlled by manipulating the pore widening time at a constant voltage during the mask fabrication process. Two-dimensional RGD nanodot, three-dimensional RGD nanorod, and RGD nanopillar arrays were carried out using various concentrations of RGD peptide solution, self-assembly times, and pore sizes, which were 74 nm, 63 nm, and 43 nm in diameter, respectively. The fabricated RGD nanodot, nanorod, and nanopillar arrays were utilized as a cell adhesion layer to evaluate the cell adhesion force, adhesion speed, spreading assay, and phosphorylation of cofilin protein in PC12, HeLa, and HEK293T normal cells. Among the three different nanostructures, RGD nanopillar arrays were found to be suitable for cellular attachment, spreading, and proliferation due to the proper arrangement of the RGD motif, which mimics in vivo conditions. Hence, our newly fabricated RGD nanostructured array can be successfully applied as a bio-platform for improving cellular functions and in in vitro tissue engineering.  相似文献   
998.
Noonan syndrome (NS) is the most common non-chromosomal syndrome seen in children and is characterized by short stature, dysmorphic facial features, chest deformity, a wide range of congenital heart defects and developmental delay of variable degree. Mutations in the Ras/mitogen-activated protein kinase (MAPK) signaling pathways cause about 70% of NS cases with a KRAS mutation present in about 2%. In a cohort of 65 clinically confirmed NS patients of Japanese origin, we screened for mutations in the RAS genes by direct sequencing. We found a novel mutation in KRAS with an amino acid substitution of asparagine to serine at codon 116 (N116S). We analyzed the biological activity of this mutant by ectopic expression of wild-type or mutant KRAS. NS-associated KRAS mutation resulted in Erk activation and active Ras-GTP levels, and exhibited mild cell proliferation. In addition, kras-targeted morpholino knocked-down zebrafish embryos caused heart and craniofacial malformations, while the expression of mutated kras resulted in maldevelopment of the heart. Our findings implicate that N116S change in KRAS is a hyperactive mutation which is a causative agent of NS through maldevelopment of the heart.  相似文献   
999.
Salvia miltiorrhiza (Danshen), a traditional Chinese herbal medicine, is commonly used for the prevention and treatment of cardiovascular disorders including atherosclerosis. However, the mechanisms responsible for the vasoprotective effects of Danshen remain largely unknown. Salvianolic acid B (Sal B) represents one of the most bioactive compounds that can be extracted from the water-soluble fraction of Danshen. We investigated the effects of Danshen and Sal B on the inflammatory response in murine macrophages. Danshen and Sal B both induced the expression of heme oxygenase-1 (HO-1) and inhibited nitric oxide (NO) production and inducible NO synthase (iNOS) expression in lipopolysaccharide (LPS)-activated RAW 264.7 cells. Inhibition of HO activity using Sn-protoporphyrin-IX (SnPP) abolished the inhibitory effect of Sal B on NO production and iNOS expression. Sal B increased macrophage arginase activity in a dose-dependent manner and diminished LPS-inducible tumor necrosis factor-α production. These effects were also reversed by SnPP. These data suggest that HO-1 expression plays an intermediary role in the anti-inflammatory effects of Sal B. In contrast to the observations in macrophages, Sal B dose-dependently inhibited arginase activity in murine liver, kidney, and vascular tissue. Furthermore, Sal B increased NO production in isolated mouse aortas through the inhibition of arginase activity and reduction of reactive oxygen species production. We conclude that Sal B improves vascular function by inhibiting inflammatory responses and promoting endothelium-dependent vasodilation. Taken together, we suggest that Sal B may represent a potent candidate therapeutic for the treatment of cardiovascular diseases associated with endothelial dysfunction.  相似文献   
1000.
Subcutaneous fat layer thickness in the abdomen is a risk indicator of several diseases and disorders like diabetes and heart problems and could be used as a measure of fitness. Skinfold measurement using mechanical calipers is simple but prone to error. Ultrasound scanning techniques are yet to be established as accurate methods for this purpose. magnetic resonance imaging (MRI) and computed tomography (CT) scans can provide the answer but are expensive and not available widely. Some initiatives were made earlier to use electrical impedance to this end, but had inadequacies. In the first part of this paper, a 4-electrode focused impedance method (FIM) with different electrode separations has been studied for its possible use in the determination of abdominal fat thickness in a localized region. For this, a saline phantom was designed to provide different electrode separations and different layers of resistive materials adjacent to the electrodes. The background saline simulated the internal organs having low impedance while the resistive layers simulated the subcutaneous fat. The plot of the measured impedance with electrode separation had different 'slopes' for different thicknesses of resistive layers, which offered a method to obtain an unknown thickness of subcutaneous fat layer. In the second part, measurements were performed on seven human subjects using two electrode separations. Fat layer thickness was measured using mechanical calipers. A plot of the above 'slope' against fat thickness could be fitted using a straight line with an R(2) of 0.93. Then this could be used as a calibration curve for the determination of unknown fat thickness. Further work using more accurate CT and MRI measurements would give a better calibration curve for practical use of this non-invasive and low-cost technique in abdominal fat thickness measurement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号