首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20896篇
  免费   2030篇
  国内免费   61篇
耳鼻咽喉   197篇
儿科学   671篇
妇产科学   771篇
基础医学   2651篇
口腔科学   202篇
临床医学   3520篇
内科学   4029篇
皮肤病学   298篇
神经病学   2232篇
特种医学   417篇
外科学   2088篇
综合类   141篇
一般理论   22篇
预防医学   2739篇
眼科学   324篇
药学   1208篇
中国医学   16篇
肿瘤学   1461篇
  2024年   32篇
  2023年   421篇
  2022年   453篇
  2021年   1244篇
  2020年   795篇
  2019年   1017篇
  2018年   1157篇
  2017年   819篇
  2016年   858篇
  2015年   914篇
  2014年   1163篇
  2013年   1391篇
  2012年   1911篇
  2011年   1919篇
  2010年   969篇
  2009年   917篇
  2008年   1253篇
  2007年   1068篇
  2006年   928篇
  2005年   753篇
  2004年   615篇
  2003年   526篇
  2002年   439篇
  2001年   102篇
  2000年   93篇
  1999年   102篇
  1998年   121篇
  1997年   105篇
  1996年   73篇
  1995年   79篇
  1994年   62篇
  1993年   38篇
  1992年   58篇
  1991年   44篇
  1990年   52篇
  1989年   45篇
  1988年   33篇
  1987年   26篇
  1986年   43篇
  1985年   30篇
  1984年   31篇
  1983年   28篇
  1982年   29篇
  1981年   18篇
  1980年   19篇
  1979年   18篇
  1978年   15篇
  1977年   32篇
  1976年   24篇
  1973年   17篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
91.
Lupus glomerulonephritis with thrombotic microangiopathy   总被引:1,自引:0,他引:1  
Well-documented cases of systemic lupus erythematosus (SLE) with thrombotic microangiopathy (TMA) are rare. Renal biopsy in a 25-year-old woman with SLE who was in renal failure demonstrated proliferative lupus glomerulonephritis with arteriolar thrombosis and the arterial intimal changes of TMA. No staining of vessels for immunoglobulins or complement was found by direct immunofluorescence. Fibrillar and flocculent deposits were seen in the widened and rarefied subendothelial space in a small artery and two glomeruli, one of which also contained electron-dense deposits. The vascular findings, which are those of TMA, are distinct from the immune complex vasculopathy of SLE.  相似文献   
92.
Mosaicism for an FMR1 gene deletion in a fragile X female   总被引:2,自引:0,他引:2  
Most cases of fragile X syndrome result from expansion of CGG repeats in the FMR1 gene; deletions and point mutations of FMR1 are much less common. Mosaicism for an FMR1 full mutation with a deletion or with a normal allele has been reported in fragile X males. Here we report on a fragile X female who is mosaic for an FMR1 full mutation and an intragenic deletion. The patient is a 4-year-old girl with developmental delay, autistic-like behaviors, and significant speech and language abnormalities. Southern blotting demonstrated the presence of a methylated full mutation, a normal allele in methylated and unmethylated forms, and an additional fragment smaller than the normal methylated allele. This result indicates that the patient is mosaic for a full mutation and a deletion, in the presence of a normal allele. By DNA sequence analysis, we mapped the 5' breakpoint 63/65 bp upstream from the CGG repeat region and the 3' breakpoint 86/88 bp downstream of the CGG repeats within the FMR1 gene. The deletion removed 210 bp, including the entire CGG repeat region. The full mutation was inherited from a premutation in the patient's mother. The deletion, which remained methylated at the Eag I and Nru I sites, was probably derived from the full mutation allele. Mosaicism of this type is rare in females with a fragile X mutation but should be kept in mind in the interpretation of Southern blots.  相似文献   
93.
T-cell clones are valuable tools for investigating T-cell specificity in infectious, autoimmune and malignant diseases. T cells specific for clinically-relevant autoantigens are difficult to clone using traditional methods. Here we describe an efficient method for cloning human autoantigen-specific CD4+ T cells pre-labelled with CFSE. Proliferating, antigen-responsive CD4+ cells were identified flow cytometrically by their reduction in CFSE staining and single cells were sorted into separate wells. The conditions (cytokines, mitogens and tissue culture plates) for raising T-cell clones were optimised. Media supplemented with IL-2+IL-4 supported growth of the largest number of antigen-specific clones. Three mitogens, PHA, anti-CD3 and anti-CD3+anti-CD28, each stimulated the growth of similar numbers of antigen-specific clones. Cloning efficiency was similar in flat- and round-bottom plates. Based on these findings, IL-2+IL-4, anti-CD3 and round-bottom plates were used to clone FACS-sorted autoantigen-specific CFSE-labelled CD4+ T cells. Sixty proinsulin- and 47 glutamic acid decarboxylase-specific clones were obtained from six and two donors, respectively. In conclusion, the CFSE-based method is ideal for cloning rare, autoantigen-specific, human CD4+ T cells.  相似文献   
94.
Somatic mosaicism, manifesting as single nucleotide variants (SNVs), mobile element insertions, and structural changes in the DNA, is a common phenomenon in human brain cells, with potential functional consequences. Using a clonal approach, we previously detected 200–400 mosaic SNVs per cell in three human fetal brains (15–21 wk postconception). However, structural variation in the human fetal brain has not yet been investigated. Here, we discover and validate four mosaic structural variants (SVs) in the same brains and resolve their precise breakpoints. The SVs were of kilobase scale and complex, consisting of deletion(s) and rearranged genomic fragments, which sometimes originated from different chromosomes. Sequences at the breakpoints of these rearrangements had microhomologies, suggesting their origin from replication errors. One SV was found in two clones, and we timed its origin to ∼14 wk postconception. No large scale mosaic copy number variants (CNVs) were detectable in normal fetal human brains, suggesting that previously reported megabase-scale CNVs in neurons arise at later stages of development. By reanalysis of public single nuclei data from adult brain neurons, we detected an extrachromosomal circular DNA event. Our study reveals the existence of mosaic SVs in the developing human brain, likely arising from cell proliferation during mid-neurogenesis. Although relatively rare compared to SNVs and present in ∼10% of neurons, SVs in developing human brain affect a comparable number of bases in the genome (∼6200 vs. ∼4000 bp), implying that they may have similar functional consequences.

Somatic mosaicism, the presence of more than one genotype in the somatic cells of an individual, is a prominent phenomenon in the human central nervous system. Forms of mosaicism include aneuploidies and smaller copy number variants (CNVs), structural variants (SVs), mobile element insertions, indels, and single nucleotide variants (SNVs). The developing human brain exhibits high levels of aneuploidy compared to other tissues, generating genetic diversity in neurons (Pack et al. 2005; Yurov et al. 2007; Bushman and Chun 2013). Such aneuploidy was suggested to be a natural feature of neurons, rather than a distinctive feature of neurodegeneration. However, the frequency of aneuploidy in neurons has been debated, with a separate study suggesting that aneuploidies occur in only about 2.2% of mature adult neurons (Knouse et al. 2014). They hence infer that such aneuploidy could have adverse effects at the cellular and organismal levels. Additionally, analysis of single cells from normal and pathological human brains identified large, private, and likely clonal somatic CNVs in both normal and diseased brains (Gole et al. 2013; McConnell et al. 2013; Cai et al. 2014; Knouse et al. 2016; Chronister et al. 2019; Perez-Rodriguez et al. 2019), with 3%–25% of human cerebral cortical nuclei carrying megabase-scale CNVs (Chronister et al. 2019) and deletions being twice as common as duplications (McConnell et al. 2013). Given that CNVs often arise from nonhomologous recombination and replication errors, their likely time of origin is during brain development. However, when CNVs first arise in human brain development has not yet been investigated. The present work is the first to examine this question using clonal populations of neuronal progenitor cells (NPCs) obtained from fetal human brains.Detection of CNVs in single neurons is challenging, given the need to amplify DNA. Such amplification may introduce artifacts that could, in turn, be misinterpreted as CNVs. In order to address this technical limitation, Hazen et al. reprogrammed adult postmitotic neurons using somatic cell nuclear transfer (SCNT) of neuronal nuclei into enucleated oocytes (Hazen et al. 2016). These oocytes then made sufficient copies of the neuronal genome allowing for whole-genome sequencing (WGS), thus eliminating the need for amplification in vitro. Using this method, they identified a total of nine structural variants in six neurons from mice, three of which were complex rearrangements. However, it is not possible to extend such studies to humans, given the ethical issues involved, besides the technical challenges in obtaining and cloning adult neurons. To circumvent the need of single-cell DNA amplification or nuclear cloning, we examined clonal cell populations obtained from neural progenitor cells from the frontal region of the cerebral cortex (FR), parietal cortex (PA) and basal ganglia (BG) and describe here the discovery and analysis of mosaic SVs in these NPCs (Bae et al. 2018). These clones were sequenced at 30× coverage (much higher than most previous single-cell studies), allowing identification of SVs other than large deletions and duplications as well as precise breakpoint resolution.  相似文献   
95.
Lymphopenia is due to a frameshift mutation in Gimap5 on rat chromosome 4 and is linked to type 1 diabetes in the diabetes prone (DP) BB rat. The hypothesis that bone marrow derived cells confer the lymphopenia phenotype was tested by reciprocal bone marrow transplantation in 40-day-old lethally irradiated diabetes resistant (DR) congenic DR.lyp/lyp (lymphopenia and diabetes) and DR.+/+ (no lymphopenia and no diabetes) rats. In two independent series of transplants, all DR.lyp/lyp rats (n=5 and 4) receiving DR.lyp/lyp bone marrow retained lymphopenia and developed insulitis (5/5 and 4/4) as well as diabetes in some (2/5 and 3/4). Both DR.+/+ and DR.lyp/lyp rats receiving DR.+/+ bone marrow cells as well as DR.+/+ rats receiving DR.lyp/lyp bone marrow cells showed no lymphopenia or diabetes. In accordance with earlier studies in non-congenic BB rats, the DR.+/+ rats receiving DR.lyp/lyp bone marrow cells recapitulated an intermediary phenotype rather than the +/+ or lyp/lyp phenotypes. Our data demonstrate that BBDP rat lymphopenia and diabetes are transferred by bone marrow transplantation to syngeneic DR.lyp/lyp but not DR.+/+ recipients. The intermediary recapitulation of DR.lyp/lyp T cells in recipient DR.+/-/+/- rats suggests that radiation resistant +/-/+/- T cells, the Gimap5 mutation in bone marrow cells, or both may not support the development of lymphopenia.  相似文献   
96.
During embryonic development, a large number of cells die naturally to shape the new organism. Members of the caspase family of proteases are essential intracellular death effectors. Herein, we generated caspase-2-deficient mice to evaluate the requirement for this enzyme in various paradigms of apoptosis. Excess numbers of germ cells were endowed in ovaries of mutant mice and the oocytes were found to be resistant to cell death following exposure to chemotherapeutic drugs. Apoptosis mediated by granzyme B and perforin was defective in caspase-2-deficient B lymphoblasts. In contrast, cell death of motor neurons during development was accelerated in caspase-2-deficient mice. In addition, caspase-2-deficient sympathetic neurons underwent apoptosis more effectively than wild-type neurons when deprived of NGF. Thus, caspase-2 acts both as a positive and negative cell death effector, depending upon cell lineage and stage of development.  相似文献   
97.
Members of the transforming growth factor-beta (TGF-beta) superfamily play a variety of important roles in testicular development and function. The tumor suppressor gene, Smad4, is a common mediator of TGF-beta, activin, and bone morphogenetic protein-mediated signaling pathways. To investigate the role of the Smad4 gene during testicular development and function, transgenic mice were generated using a Flag-tagged Smad4 gene driven by 180-bp fragment of the Mullerian inhibiting substance upstream promoter sequence. Three Smad4 transgenic founders (A, B, and G) were detected by Southern blot analysis; line B showed the highest expression of the Smad4 transgene and was further studied. The fertility in F1 generation (B) and F2 generation (BB) of the Smad4 transgenic mice was not impaired. However, in the F3 generation (B2x) all animals were impacted by the overexpression of the Smad4 transgene and two kinds of phenotypes were observed. In one group animals were completely infertile, while in the other group animals were fertile and sired the normal number of pups/litter. These groups are designated as infertile and fertile in the text. Histological evaluation of the testes from the infertile group showed variable degrees of Leydig cell hyperplasia, apoptosis of germ cells, spermatogenic arrest, seminiferous tubule degeneration, and infertility. In the fertile group, there was no apparent change in the histology of the testis except for a slight increase in the number of Leydig cells. Serum follicle-stimulating hormone levels in the adult animals of both groups of Smad4 transgenic male mice were not significantly different from normal littermates; however, testosterone levels in both groups were significantly (P < 0.05) increased. These results suggest that overexpression of Smad4 leads to testicular abnormalities and infertility supporting the hypothesis that the TGF-beta signaling pathways are carefully orchestrated during testicular development. In the absence of normal levels of Smad4 testicular function is compromised.  相似文献   
98.
The Competencies Conference: Future Directions in Education and Credentialing in Professional Psychology was held in Arizona in November 2002. One of the workshops, Individual and Cultural Differences (ICD), focused on racism, homophobia, and ageism. The consensus was that self-awareness and knowledge about the three "isms" are critical components in the education and training of psychologists. This article, authored by four of the workshop attendees, is a review of the current research and theoretical literature. Implications that address both content and context in graduate programs and training sites are presented. This is one of a series of articles published in this issue of the Journal of Clinical Psychology. Several other articles that resulted from the Competencies Conference will appear in Professional Psychology: Research and Practice and The Counseling Psychologist.  相似文献   
99.
The relationship between odor identification and cognition has not been previously well characterized. The neuroanatomy of the olfactory system and the frequent finding of olfactory dysfunction in neurodegenerative diseases suggest a likely relationship between odor identification and memory, language, and executive functioning, though previous studies have often failed to demonstrate the expected relationship. The current study examined this relationship in across a continuum of ability levels (N=100). Strongest correlations were found between odor identification and language, most aspects of memory, and a measure of general cognitive functioning. Significant but more modest correlations were seen between odor identification and attention, motor, visuospatial, and executive functions. A regression analysis revealed language as the only significant predictor of olfactory performance. These findings suggest that odor identification is most closely associated with other measures of temporo-limbic functioning. The implications of these findings, particularly in consideration of the assessment of older adults, are discussed.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号