首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   727篇
  免费   64篇
  国内免费   3篇
儿科学   2篇
妇产科学   11篇
基础医学   122篇
临床医学   64篇
内科学   210篇
皮肤病学   7篇
神经病学   49篇
特种医学   23篇
外科学   95篇
综合类   1篇
一般理论   2篇
预防医学   37篇
眼科学   2篇
药学   66篇
中国医学   1篇
肿瘤学   102篇
  2023年   1篇
  2022年   10篇
  2021年   14篇
  2020年   6篇
  2019年   14篇
  2018年   8篇
  2017年   12篇
  2016年   14篇
  2015年   31篇
  2014年   36篇
  2013年   35篇
  2012年   66篇
  2011年   69篇
  2010年   31篇
  2009年   33篇
  2008年   61篇
  2007年   48篇
  2006年   59篇
  2005年   65篇
  2004年   53篇
  2003年   46篇
  2002年   42篇
  2001年   5篇
  2000年   5篇
  1999年   2篇
  1998年   5篇
  1997年   4篇
  1996年   6篇
  1995年   5篇
  1994年   7篇
  1993年   1篇
排序方式: 共有794条查询结果,搜索用时 15 毫秒
61.
The emergence and spread of multidrug-resistant gram-positive bacteria represent a serious clinical problem. Telavancin is a novel lipoglycopeptide antibiotic that possesses rapid in vitro bactericidal activity against a broad spectrum of clinically relevant gram-positive pathogens. Here we demonstrate that telavancin's antibacterial activity derives from at least two mechanisms. As observed with vancomycin, telavancin inhibited late-stage peptidoglycan biosynthesis in a substrate-dependent fashion and bound the cell wall, as it did the lipid II surrogate tripeptide N,N'-diacetyl-L-lysinyl-D-alanyl-D-alanine, with high affinity. Telavancin also perturbed bacterial cell membrane potential and permeability. In methicillin-resistant Staphylococcus aureus, telavancin caused rapid, concentration-dependent depolarization of the plasma membrane, increases in permeability, and leakage of cellular ATP and K(+). The timing of these changes correlated with rapid , concentration-dependent loss of bacterial viability, suggesting that the early bactericidal activity of telavancin results from dissipation of cell membrane potential and an increase in membrane permeability. Binding and cell fractionation studies provided direct evidence for an interaction of telavancin with the bacterial cell membrane; stronger binding interactions were observed with the bacterial cell wall and cell membrane relative to vancomycin. We suggest that this multifunctional mechanism of action confers advantageous antibacterial properties.  相似文献   
62.
Patterns of nucleotide substitution in Drosophila and mammalian genomes   总被引:7,自引:0,他引:7  
To estimate patterns of molecular evolution of unconstrained DNA sequences, we used maximum parsimony to separate phylogenetic trees of a non-long terminal repeat retrotransposable element into either internal branches, representing mainly the constrained evolution of active lineages, or into terminal branches, representing mainly nonfunctional “dead-on-arrival” copies that are unconstrained by selection and evolve as pseudogenes. The pattern of nucleotide substitutions in unconstrained sequences is expected to be congruent with the pattern of point mutation. We examined the retrotransposon Helena in the Drosophila virilis species group (subgenus Drosophila) and the Drosophila melanogaster species subgroup (subgenus Sophophora). The patterns of point mutation are indistinguishable, suggesting considerable stability over evolutionary time (40–60 million years). The relative frequencies of different point mutations are unequal, but the “transition bias” results largely from an ≈2-fold excess of GC to AT substitutions. Spontaneous mutation is biased toward AT base pairs, with an expected mutational equilibrium of ≈65% A + T (quite similar to that of long introns). These data also enable the first detailed comparison of patterns of point mutations in Drosophila and mammals. Although the patterns are different, all of the statistical significance comes from a much greater rate of GC to AT substitution in mammals, probably because of methylated cytosine “hotspots.” When the GC to AT substitutions are discounted, the remaining differences are considerably reduced and not statistically significant.  相似文献   
63.
64.

Background  

IQGAP1 and IQGAP2 are homologous members of the IQGAP family of scaffold proteins. Accumulating evidence implicates IQGAPs in tumorigenesis. We recently reported that IQGAP2 deficiency leads to the development of hepatocellular carcinoma (HCC) in mice. In the current study we extend these findings, and investigate IQGAP1 and IQGAP2 expression in human HCC.  相似文献   
65.
66.
The homotetrameric tumor suppressor p53 consists of folded core and tetramerization domains, linked and flanked by intrinsically disordered segments that impede structure analysis by x-ray crystallography and NMR. Here, we solved the quaternary structure of human p53 in solution by a combination of small-angle x-ray scattering, which defined its shape, and NMR, which identified the core domain interfaces and showed that the folded domains had the same structure in the intact protein as in fragments. We combined the solution data with electron microscopy on immobilized samples that provided medium resolution 3D maps. Ab initio and rigid body modeling of scattering data revealed an elongated cross-shaped structure with a pair of loosely coupled core domain dimers at the ends, which are accessible for binding to DNA and partner proteins. The core domains in that open conformation closed around a specific DNA response element to form a compact complex whose structure was independently determined by electron microscopy. The structure of the DNA complex is consistent with that of the complex of four separate core domains and response element fragments solved by x-ray crystallography and contacts identified by NMR. Electron microscopy on the conformationally mobile, unbound p53 selected a minor compact conformation, which resembled the closed conformation, from the ensemble of predominantly open conformations. A multipronged structural approach could be generally useful for the structural characterization of the rapidly growing number of multidomain proteins with intrinsically disordered regions.  相似文献   
67.
Eukaryotic translation termination is mediated by two interacting release factors, eRF1 and eRF3, which act cooperatively to ensure efficient stop codon recognition and fast polypeptide release. The crystal structures of human and Schizosaccharomyces pombe full-length eRF1 in complex with eRF3 lacking the GTPase domain revealed details of the interaction between these two factors and marked conformational changes in eRF1 that occur upon binding to eRF3, leading eRF1 to resemble a tRNA molecule. Small-angle X-ray scattering analysis of the eRF1/eRF3/GTP complex suggested that eRF1''s M domain contacts eRF3''s GTPase domain. Consistently, mutation of Arg192, which is predicted to come in close contact with the switch regions of eRF3, revealed its important role for eRF1''s stimulatory effect on eRF3''s GTPase activity. An ATP molecule used as a crystallization additive was bound in eRF1''s putative decoding area. Mutational analysis of the ATP-binding site shed light on the mechanism of stop codon recognition by eRF1.  相似文献   
68.
Achieving effective treatment outcomes for patients with glioblastoma (GBM) has been impeded by many obstacles, including the pharmacokinetic limitations of antitumor agents, such as topotecan (TPT). Here, we demonstrate that intravenous administration of a novel nanoliposomal formulation of TPT (nLS-TPT) extends the survival of mice with intracranial GBM xenografts, relative to administration of free TPT, because of improved biodistribution and pharmacokinetics of the liposome-formulated drug. In 3 distinct orthotopic GBM models, 3 weeks of biweekly intravenous therapy with nLS-TPT was sufficient to delay tumor growth and significantly extend animal survival, compared with treatment with free TPT (P ≤ .03 for each tumor tested). Analysis of intracranial tumors showed increased activation of cleaved caspase-3 and increased DNA fragmentation, both indicators of apoptotic response to treatment with nLS-TPT. These results demonstrate that intravenous delivery of nLS-TPT is a promising strategy in the treatment of GBM and support clinical investigation of this therapeutic approach.  相似文献   
69.
The gene SCN9A is responsible for three human pain disorders. Nonsense mutations cause a complete absence of pain, whereas activating mutations cause severe episodic pain in paroxysmal extreme pain disorder and primary erythermalgia. This led us to investigate whether single nucleotide polymorphisms (SNPs) in SCN9A were associated with differing pain perception in the general population. We first genotyped 27 SCN9A SNPs in 578 individuals with a radiographic diagnosis of osteoarthritis and a pain score assessment. A significant association was found between pain score and SNP rs6746030; the rarer A allele was associated with increased pain scores compared to the commoner G allele (P = 0.016). This SNP was then further genotyped in 195 pain-assessed people with sciatica, 100 amputees with phantom pain, 179 individuals after lumbar discectomy, and 205 individuals with pancreatitis. The combined P value for increased A allele pain was 0.0001 in the five cohorts tested (1277 people in total). The two alleles of the SNP rs6746030 alter the coding sequence of the sodium channel Nav1.7. Each was separately transfected into HEK293 cells and electrophysiologically assessed by patch-clamping. The two alleles showed a difference in the voltage-dependent slow inactivation (P = 0.042) where the A allele would be predicted to increase Nav1.7 activity. Finally, we genotyped 186 healthy females characterized by their responses to a diverse set of noxious stimuli. The A allele of rs6746030 was associated with an altered pain threshold and the effect mediated through C-fiber activation. We conclude that individuals experience differing amounts of pain, per nociceptive stimulus, on the basis of their SCN9A rs6746030 genotype.  相似文献   
70.
Endothelial dysfunction is a key triggering event in atherosclerosis. Following the entry of lipoproteins into the vessel wall, their rapid modification results in the generation of advanced glycation endproduct epitopes and subsequent infiltration of inflammatory cells. These inflammatory cells release receptor for advanced glycation endproduct (RAGE) ligands, specifically S100/calgranulins and high-mobility group box 1, which sustain vascular injury. Here, we demonstrate critical roles for RAGE and its ligands in vascular inflammation, endothelial dysfunction, and atherosclerotic plaque development in a mouse model of atherosclerosis, apoE-/- mice. Experiments in primary aortic endothelial cells isolated from mice and in cultured human aortic endothelial cells revealed the central role of JNK signaling in transducing the impact of RAGE ligands on inflammation. These data highlight unifying mechanisms whereby endothelial RAGE and its ligands mediate vascular and inflammatory stresses that culminate in atherosclerosis in the vulnerable vessel wall.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号