首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2713篇
  免费   162篇
  国内免费   8篇
耳鼻咽喉   18篇
儿科学   80篇
妇产科学   12篇
基础医学   277篇
口腔科学   47篇
临床医学   353篇
内科学   503篇
皮肤病学   21篇
神经病学   236篇
特种医学   124篇
外国民族医学   1篇
外科学   328篇
综合类   41篇
一般理论   2篇
预防医学   407篇
眼科学   49篇
药学   239篇
肿瘤学   145篇
  2024年   2篇
  2023年   11篇
  2022年   17篇
  2021年   37篇
  2020年   26篇
  2019年   40篇
  2018年   40篇
  2017年   41篇
  2016年   47篇
  2015年   57篇
  2014年   72篇
  2013年   143篇
  2012年   196篇
  2011年   231篇
  2010年   109篇
  2009年   115篇
  2008年   163篇
  2007年   181篇
  2006年   187篇
  2005年   211篇
  2004年   205篇
  2003年   185篇
  2002年   175篇
  2001年   32篇
  2000年   39篇
  1999年   37篇
  1998年   35篇
  1997年   28篇
  1996年   15篇
  1995年   13篇
  1994年   13篇
  1993年   26篇
  1992年   17篇
  1991年   16篇
  1990年   20篇
  1989年   10篇
  1988年   6篇
  1987年   5篇
  1986年   9篇
  1985年   7篇
  1984年   8篇
  1983年   3篇
  1982年   14篇
  1981年   6篇
  1980年   9篇
  1979年   5篇
  1978年   3篇
  1977年   3篇
  1964年   2篇
  1960年   2篇
排序方式: 共有2883条查询结果,搜索用时 15 毫秒
31.
Serum prostate-specific antigen is credited with dramatic advances in the early detection, screening, and management of men with prostatic carcinoma. There has been more than a twofold increase in the number of men diagnosed during the last decade, and prostate cancer has emerged as the most common non-skin cancer and the second leading cause of cancer death in men. This report summarizes the history and current status of prostate-specific antigen and other serum markers, incorporating consensus opinions from the Second International Consultation on Prostate Cancer held in Paris in June 1999.  相似文献   
32.
33.
Motivated by declines in biodiversity exacerbated by climate change, we identified a network of conservation sites designed to provide resilient habitat for species, while supporting dynamic shifts in ranges and changes in ecosystem composition. Our 12-y study involved 289 scientists in 14 study regions across the conterminous United States (CONUS), and our intent was to support local-, regional-, and national-scale conservation decisions. To ensure that the network represented all species and ecosystems, we stratified CONUS into 68 ecoregions, and, within each, we comprehensively mapped the geophysical settings associated with current ecosystem and species distributions. To identify sites most resilient to climate change, we identified the portion of each geophysical setting with the most topoclimate variability (high landscape diversity) likely to be accessible to dispersers (high local connectedness). These “resilient sites” were overlaid with conservation priority maps from 104 independent assessments to indicate current value in supporting recognized biodiversity. To identify key connectivity areas for sustaining species movement in response to climate change, we codeveloped a fine-scale representation of human modification and ran a circuit-theory-based analysis that emphasized movement potential along geographic climate gradients. Integrating areas with high values for two or more factors, we identified a representative, resilient, and connected network of biodiverse lands covering 35% of CONUS. Because the network connects climatic gradients across 250,000 biodiversity elements and multiple resilient examples of all geophysical settings in every ecoregion, it could form the spatial foundation for targeted land protection and other conservation strategies to sustain a diverse, dynamic, and adaptive world.

Conservationists in the United States are not winning the battle to sustain biological diversity. Despite broad public support and unprecedented bipartisan agreement on Earth Day 1970, followed by landmark environmental laws, expanded regulatory efforts, and the establishment of hundreds of private conservation organizations, the species and ecosystems that characterize the natural world continue to decline. In North America, the abundance of birds has fallen 29% since 1970 (1); 32% of insect taxa are in decline (2); and 56% of mammalian carnivore and ungulates have shown notable range contractions since 1950 (3). Amphibians have declined an average (avg.) of 33% since 2002 (4). Of the 51,936 species of plants, vertebrates, and macroinvertebrates tracked by NatureServe for the conterminous United States (CONUS), 9% are ranked vulnerable, 12% imperiled, and 1% possibly extinct (5).*Changes in climate are exacerbating species declines, especially for small, isolated populations. As temperature and moisture regimes change, species ranges are shifting with speed and magnitude unprecedented in recent millennia. In the eastern United States, trees have shifted their centers of distribution 10 km north and 11 km west per decade since 1980 (6). Southern bird ranges have shifted northward by an avg. of 23.5 km per decade (7). These changes are on par with global shifts of 10 km north and 11 m upslope per decade across taxa groups (8).A primary driver of biodiversity decline is habitat loss and degradation resulting from land-use change (9, 10). Land- and water-conservation efforts can reverse these trends when strategically located and enabled by the necessary investments. In North America, billions of dollars spent on wetland restoration and management, combined with more stringent hunting regulations, reversed bird-abundance declines in wetlands (1). Globally, conservation investment from 1996 to 2008 reduced the extinction risk for mammals and birds by a median value of 29% (10). However, the effectiveness of land and water conservation in sustaining biodiversity depends on the representativeness of the conserved area network, the resilience and condition of the sites, and the connectivity between sites to allow for movement and adaptation (11, 12).To sustain biodiversity and facilitate adaptation of species to a changing climate, the Convention on Biological Diversity (CBD) Target 2 (13) calls for the protection of well-connected and effective systems of protected areas covering at least 30% of the planet. However, as climate change drives changes in species distributions and ecosystem composition, conservation plans based on current biodiversity patterns may become less effective at sustaining species (14). In particular, the current configuration of protected areas may fail to adequately provide access to the diverse climatic conditions needed for species populations to persist amid changing regional climates (12, 15, 16). Accordingly, conservation planners are beginning to focus on conserving sites that represent the earth’s eco-physiographic regions (hereafter “ecoregions”) and the spectrum of geophysical variation and a diversity of connected topographic microclimates (hereafter “topoclimates”) to allow species to adapt in situ or move to newly favorable areas, an approach known as Conserving Nature’s Stage (CNS) (1519).Most studies of climate effects on biota use regional-scale climate-projection models combined with species vulnerability assessments to identify areas of relatively high threat or stability at a coarse scale. Here, we take a different approach. By focusing on geophysical diversity that shapes species distributions and fine-scale climate variation directly relevant to species persistence (20, 21), we aimed to identify enduring climate strongholds relevant under many climate scenarios and to map them at scales appropriate for land-conservation decisions.For species in topographically diverse locations, variability in temperature locally may exceed the degree of warming expected over the next century (22, 23). These areas have the potential to provide species with microclimatic buffering from regional climatic change by allowing local dispersal to more favorable microclimates or providing stepping stones to facilitate longer-distance range shifts (24, 25). Paleoecological records highlight the dynamic nature of species responses to Quaternary climate change, including the role of topography in creating climate refugia (2628), and suggest that the CNS strategy may be appropriate for many taxa if it is purposefully designed to accommodate species responses to climate change (29).Species persisted under past climatic changes through in situ refugia combined with range shifts to track suitable climates (3032). Rapid warming projected for the next century will likely require many species to adapt in a similar way (3335), and many species’ ranges are already shifting (8). However, high levels of habitat loss and fragmentation due to anthropogenic activities are isolating populations and creating barriers to species movement that were not present during past periods of rapid climate change (29, 36, 37). Thus, conservation actions that maintain or increase connectivity are essential for effective conservation under climate change, as connectivity facilitates movement and gene flow, bolstering adaptive capacity by maintaining genetic diversity (3840).To sustain biodiversity, a conservation network must also include sites that support living biotic assemblages reflecting each ecoregion’s geophysical properties, such as dominant habitats, unique communities, and viable examples of rare and specialist species populations. We refer to these as sites with “recognized biodiversity value.” Including them in a conservation network ensures that it is embedded with species and habitats that provide the capacity for adapting to climate change (41, 42). In the United States, state agencies and nongovernment organizations (NGOs) have identified over a thousand areas with recognized biodiversity value through comprehensive ecoregional or state-based assessments specifically targeting viable rare species populations, exemplary natural communities, and intact ecosystems. Integrating the footprint of these sites with spatial information on connected topoclimates and representative geophysical features helps confirm that the sites are collectively distributed across all abiotic “stages” needed to sustain biodiversity into the future.  相似文献   
34.
Purpose: Assess the effect of heart rate on diagnostic accuracy for the detection of significant coronary artery stenosis using 16-row multislice computed tomography (MSCT). Material and methods: About 120 patients (105 males; 59±11 years) with suspected coronary artery disease who underwent conventional coronary angiography (CA) and MSCT-CA were retrospectively enrolled for the study. Patients underwent a MSCT-CA (Sensation 16, Siemens, Germany), with the following protocol: collimation 16×0.75 mm, gantry rotation time 420 ms, feed/rotation 3.0 mm, kV 120, mAs 400–500. The protocol for contrast material administration was 100 ml of Iodixanol (Visipaque 320 mg l/ml, Amersham, UK) at 4 ml/s and the delay was defined with a bolus tracking technique. In all patients the mean heart rate (HR) during the scan was used as a criteria to divide the population in two groups of 60 patients each. In one group (Low HR) the 60 patients with lower heart rates, and in the other group (High HR) the patients with higher heart rates. In the two groups diagnostic accuracy (per coronary segment) for the detection of significant stenosis (≥50% lumen reduction) was evaluated in vessels ≥2 mm of diameter using quantitative CA as reference standard. The difference in diagnostic accuracy were compared with a Chi2 test and a p<0.05 was considered significant. Results: There was no significant difference between the two groups regarding age, gender, weight, mean intravascular attenuation, and calcium score. Overall 1310 (652 for Low HR and 658 for High HR) segments with 219 (105 for Low HR and 114 for High HR) significant lesions were available for the analysis. The average heart rate was 52±4HU and 63±5HU for Low HR and High HR, respectively (p<0.001). The sensitivity and specificity were 92 and 96% for Low HR and 90 and 92% for High HR (p<0.05). There were 22 vs. 44 false positives, and 8 vs. 12 false negatives in the Low HR and High HR, respectively. Conclusion: Increasing HR significantly deteriorates diagnostic accuracy in MSCT-CA.  相似文献   
35.
A simple, rapid, protozoan assay method requiring small amounts of venom is described. Lethalities of Crotalus atrox, Crotalus scultulatus, Centruroides sculpturatus, Hadrurus arizonensis, and Heloderma suspectum venoms determined by this method are compared with those obtained in mice.  相似文献   
36.
37.
38.
39.
40.

Objectives

We describe the Canadian results of the Ascyrus Medical Dissection Stent (AMDS), a novel partially uncovered aortic arch hybrid graft implanted antegrade during hypothermic circulatory arrest to promote true lumen expansion and enhance aortic remodeling.

Methods

From March 2017 to February 2018, 16 consecutive patients (66 ± 12 years; 38% female) presented with acute type A aortic dissections and underwent emergent surgical aortic repair with AMDS implantation. All patients presented with DeBakey I aortic dissection, with evidence of malperfusion in 50% (n = 8) of patients. All cases were performed under hypothermic circulatory arrest with an additional average duration for AMDS implantation time of 2.1 minutes.

Results

All 16 device implantations were successful. Overall 30-day mortality was 6.3% (n = 1) and stroke occurred in 6.3% (n = 1) of cases. There was no incidence of device-related aortic injury or aortic arch branch vessel occlusion. During the follow-up period, 12 patients had completed at least 1 postoperative computed tomography scan. At initial follow-up computed tomography scan, complete or partial thrombosis, and remodeling of the aortic arch occurred in 91.7% of cases (n = 11/12) and in the proximal descending thoracic aorta, complete or partial thrombosis, and remodeling occurred in 91.7% (n = 11/12).

Conclusions

Preliminary results suggest that the AMDS is a safe, feasible and reproducible adjunct to current surgical approaches for acute DeBakey I aortic dissection repair. Further, the AMDS manages malperfusion and promotes early positive remodeling in the aortic arch and distal dissected segments, with favorable FL closure rates at follow-up. Ongoing follow-up will provide additional insight into the long-term effects of the AMDS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号