The gas-phase formation of new particles less than 1 nm in size and their subsequent growth significantly alters the availability of cloud condensation nuclei (CCN, >30–50 nm), leading to impacts on cloud reflectance and the global radiative budget. However, this growth cannot be accounted for by condensation of typical species driving the initial nucleation. Here, we present evidence that nucleated iodine oxide clusters provide unique sites for the accelerated growth of organic vapors to overcome the coagulation sink. Heterogeneous reactions form low-volatility organic acids and alkylaminium salts in the particle phase, while further oligomerization of small α-dicarbonyls (e.g., glyoxal) drives the particle growth. This identified heterogeneous mechanism explains the occurrence of particle production events at organic vapor concentrations almost an order of magnitude lower than those required for growth via condensation alone. A notable fraction of iodine associated with these growing particles is recycled back into the gas phase, suggesting an effective transport mechanism for iodine to remote regions, acting as a “catalyst” for nucleation and subsequent new particle production in marine air.Marine aerosol formation contributes significantly to the global radiative budget given the high susceptibility of marine stratiform cloud radiative properties to changes in cloud condensation nuclei (CCN) availability. Atmospheric new-particle-formation is thought to involve nucleation of sulfuric acid with water, ammonia, or amines followed by condensation/growth in the presence of organic vapors (1, 2). Unique in the marine boundary layer (MBL), new particle formation involves sequential addition of HIO3 or clustering of iodine oxides (IxOy) (3, 4). In specific source regions such as coastal zones, seaweed beds, or snowpack/pack-ice, iodine oxide nucleation can be a driving force for nucleation (5–7). Over Arctic waters, nonetheless, one study finds insufficient iodic acid vapors to grow nucleated particles to CCN sizes (8), whereas another study finds that both nucleation and growth are almost exclusively driven by iodic acid (9). Over the open ocean, the supply of iodine oxides has been thought to be limited; however, recent measurements suggest that significant reactive iodine chemistry can occur in these regions (10). Moreover, observational evidence exists for open ocean particle formation and growth, especially when oceanic productivity is high (11, 12). An increase in atmospheric iodine levels in the North Atlantic since the mid-20th century has been shown to be driven by growth of anthropogenic ozone and enhanced subice phytoplankton production (13). While the reported IO concentration (0.4–3.1 ppt) in the remote MBL (10, 14, 15) is likely sufficient for formation of prenucleation clusters (∼1 nm), growth of these initial clusters requires the presence of other condensable vapors (16). Since preexisting aerosol particles act as a strong sink for the nucleated clusters, thus inhibiting atmospheric aerosol and CCN formation (17, 18), this early growth phase is essential for their survival. Whereas sulfuric acid vapor is also involved in nucleation, its level in remote open ocean is generally too low (105 molecules cm−3) to support subsequent particle growth, leaving organic vapors as the most plausible alternative for particle growth.In the marine atmosphere, condensing organics must originate from the oxidation of marine volatile organic compounds (VOCs), which predominantly comprise C1–C5 VOCs (e.g., isoprene) released from phytoplankton. Principal high volatility oxidation products consist of intermediate oxidized organics (IOOs), such as polyhydric alcohols (e.g., tetrols) or polyfunctional carbonyls (e.g., glyoxal) (19–22). Nonetheless, growth of available prenucleation clusters/nanometer particles requires condensing organic molecules of low effective volatilities (i.e., saturation mass concentration, C* < ∼10−3 μg m−3); otherwise, preferential condensation of the organic mass to larger-diameter particles would occur (23, 24). Formation of such extremely low-volatility organic compounds (ELVOCs) from gas-phase reaction is well established for monoterpene oxidation products (25, 26).A potential pathway for formation of low-volatility organics could also result from particle-phase chemical reactions induced by iodine oxides in the early stages of marine particle formation. When the underlying chemistry is sufficiently fast, kinetic condensation occurs, resulting in particles with diameters smaller than about 50 nm growing at the same rate (e.g., nm h−1) (24). If, however, particle-phase chemistry is preferentially favored in the smallest particles (i.e., stemming from the higher relative concentration of iodine oxides in freshly formed marine particles), growth of the nucleated particles could proceed more rapidly, as compared to that in which gas-phase chemistry is the source of the low-volatility compounds (23).In this paper, we present experimental results from field measurements as well as laboratory studies of nanometer particle growth and derive a plausible chemical mechanism from the results that can explain the observations of ultrafine particle growth in the marine atmosphere. The results suggest that both iodine and condensed organics contribute to particle growth from a nascent nucleation mode into an ultrafine particle mode. Moreover, laboratory studies of the growth of seed iodine oxide particles (IOP) via heterogeneous reactions with organic vapors suggest a hitherto unrecognized mechanism that fast-tracks the growth of nucleation mode clusters into survivable aerosol particles. In this process, a notable fraction of the iodine associated with these growing particles is recycled back to the gas phase, suggesting a transport mechanism for iodine to remote regions. 相似文献
There is a large number (1.5 million per year) of premature births in China. It is necessary to obtain the authentic incidences of intraventricular hemorrhage (IVH) and periventricular leukomalacia (PVL), the common brain injuries, in Chinese premature infants. The present multicenter study aimed to investigate the incidence of brain injuries in premature infants in ten urban hospitals in China.
Methods
The research proposal was designed by the Subspecialty Group of Neonatology of Pediatric Society of the Chinese Medical Association. Ten large-scale urban hospitals voluntarily joined the multicenter investigation. All premature infants with a gestational age ≤34 weeks in the ten hospitals were subjected to routine cranial ultrasound within three days after birth, and then to repeated ultrasound every 3–7 days till their discharge from the hospital from January 2005 to August 2006. A uniform data collection sheet was designed to record cases of brain injuries.
Results
The incidences of overall IVH and severe IVH were 19.7% (305/1551) and 4.6% (72/1551), respectively with 18.4% (56/305) for grade 1, 58.0% (177/305) for grade 2, 17.7% (54/305) for grade 3 and 5.9% (18/305) for grade 4 in nine hospitals. The incidences of overall PVL and cystic PVL were 5.0% (89/1792) and 0.8% (14/1792) respectively, with 84.3% (75/89) for grade 1, 13.5% (12/89) for grade 2, and 2.2% (2/89) for grade 3 in the ten hospitals. The statistically significant risk factors that might aggravate the severity of IVH were vaginal delivery (OR=1.883, 95% CI: 1.099–3.228, P=0.020) and mechanical ventilation (OR=4.150, 95% CI: 2.384–7.223, P=0.000). The risk factors that might result in the development of cystic PVL was vaginal delivery (OR=21.094, 95% CI: 2.650–167.895, P=0.000).
Conclusions
The investigative report can basically reflect the incidence of brain injuries in premature infants in major big cities of China. Since more than 60% of the Chinese population live in the rural areas of China, it is expected to undertake a further multicenter investigation covering the rural areas in the future. 相似文献