全文获取类型
收费全文 | 2090篇 |
免费 | 182篇 |
国内免费 | 114篇 |
专业分类
耳鼻咽喉 | 57篇 |
儿科学 | 15篇 |
妇产科学 | 11篇 |
基础医学 | 158篇 |
口腔科学 | 28篇 |
临床医学 | 250篇 |
内科学 | 236篇 |
皮肤病学 | 29篇 |
神经病学 | 31篇 |
特种医学 | 48篇 |
外科学 | 192篇 |
综合类 | 553篇 |
现状与发展 | 1篇 |
预防医学 | 202篇 |
眼科学 | 32篇 |
药学 | 209篇 |
3篇 | |
中国医学 | 217篇 |
肿瘤学 | 114篇 |
出版年
2024年 | 16篇 |
2023年 | 37篇 |
2022年 | 81篇 |
2021年 | 92篇 |
2020年 | 88篇 |
2019年 | 51篇 |
2018年 | 35篇 |
2017年 | 58篇 |
2016年 | 37篇 |
2015年 | 91篇 |
2014年 | 90篇 |
2013年 | 124篇 |
2012年 | 217篇 |
2011年 | 191篇 |
2010年 | 170篇 |
2009年 | 128篇 |
2008年 | 158篇 |
2007年 | 133篇 |
2006年 | 154篇 |
2005年 | 124篇 |
2004年 | 74篇 |
2003年 | 63篇 |
2002年 | 49篇 |
2001年 | 36篇 |
2000年 | 31篇 |
1999年 | 16篇 |
1998年 | 10篇 |
1997年 | 4篇 |
1996年 | 5篇 |
1995年 | 7篇 |
1994年 | 3篇 |
1993年 | 4篇 |
1992年 | 2篇 |
1991年 | 2篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1965年 | 2篇 |
1963年 | 1篇 |
排序方式: 共有2386条查询结果,搜索用时 15 毫秒
41.
目的分析变应性鼻炎血清变应原特异性Ig E(s Ig E)、皮肤点刺试验(SPT)、外周血嗜酸粒细胞(EOS)计数与鼻部症状积分的相关性。方法选择2011年9月至2014年5月荆州市中心医院收治的变应性鼻炎患者70例,对患者分别采用s Ig E检测、SPT、外周血EOS计数测定,并对鼻炎症状进行积分;分析各结果的相关性。结果鼻炎症状积分与s Ig E检测试验、变应原SPT、外周血EOS计数无明显相关性(r=0.058,0.021,0.031,均P>0.05);s Ig E与SPT呈明显正相关(r=0.532,P<0.05),s Ig E与EOS、SPT与EOS无明显相关性(r=0.133,0.078,均P>0.05)。结论 s Ig E与SPT均可作为诊断变应性鼻炎的方法,但是无法对患者症状的严重程度进行判断,需要结合患者的主诉、体征、病状和病史进行综合评价。 相似文献
42.
Feasibility of one‐step endoscopic metal stenting for distal malignant biliary obstruction 下载免费PDF全文
43.
44.
45.
目的:根据流行病学调查的方法,对艾森克个性问卷(EPQ)进行信效度检验,并建立该问卷镇江市个别正常(牙合)学生性别常模,对临床工作指导更具针对性.方法:根据学校综合实力的不同,采用随机分层整群抽样的方法,随机抽取镇江市9所学校不同年级38个班的1430学生,根据纳入和排除标准筛选出符合标准的个别正常(牙合)学生,并根据年龄分为幼年(12~15岁)组和成人(16岁以上)组,然后在相同的环境条件和相同的指导语指导下进行艾森克个性问卷测量,根据测量结果建立镇江市个别正常(牙合)学生艾森克个性问卷性别常模.结果:男性个别正常(牙合)学生在P分量表和E分量表上的评分高于女生的评分,但男女学生在E分量表上的差异没有统计学意义;男性个别正常(牙合)学生在N分量表和L分量表上的评分低于女生的评分,但幼年男女生在N分量表上的差异没有统计学意义.结论:可采用艾森克个性问卷建立镇江市个别正常(牙合)学生EPQ的性别常模,女性对错牙(牙合)畸形所致的容貌影响更为关注. 相似文献
46.
Shoufeng Wang Shuya Xing Yingying Zhang Yafei Fan Huaiqing Zhao Jianfeng Wang Shuxiang Zhang Wengui Wang 《RSC advances》2019,9(71):41847
We herein report the functionalization of α-C–H in alcohols through cross-dehydrogenative coupling reactions. Selectfluor was used as a mild oxidant. In situ-generated HF participated in the reaction and no external strong acid was necessary. A variety of heteroaryl-substituted alcohols were achieved with good yields and with good functional group tolerance.We herein report the functionalization of α-C–H in alcohols through cross-dehydrogenative coupling reactions.Alcohols are one of the most important types of compounds, because they exist universally in bioactive molecules and are also found in nature in the form of sugars, steroids, etc. Furthermore, alcohols can be used as versatile building blocks, and be transformed into other functional groups. The synthesis of alcohols is a classic topic in organic chemistry. Late-stage functionalization has attracted the interest of chemists because in this way complex molecules could be modified. In particular, functionalization of C–H is a very efficient way to build various structures, as pre-functionalization here is not needed. Thus, transformation of C–H in alcohols is a direct method to prepare diverse alcohols from simple molecules.During the past several decades, activations of the α sp3 C–H groups of alcohols have been achieved through radical-involved processes. In the early research, functionalizations of α C–H groups in alcohols were always initiated by light or di-tert-butyl peroxide, and the generated radicals could add to alkenes, affording alkylated alcohols.1 This reaction was developed by Duan to construct hydroxyl-containing oxindoles through a tandem addition/cyclization reaction.2 Also, amino alcohols were prepared through addition of radicals generated from alcohols to unactivated alkenes.3 Reactions catalyzed by metals such as Rh,4 Fe,5 Cu and Co6 have also been applied. In 2009, addition of such radicals to alkynes was reported. Homoallylic alcohols were prepared using simple alcohol molecules.7 The reactions of alcohols and cinnamic acids were also reported and allylic alcohols were obtained.8 However, arylations of the α C–H in alcohols have attracted much interest because such structures are present in many bioactive molecules (Fig. 1). Great efforts have been expended to the synthesis of arylated alcohols. In 2014, Liu reported the reaction of alcohol molecules and isocyanide, and various alkyl-substituted phenanthridines were achieved.9Open in a separate windowFig. 1Bioactive molecules containing alcoholic hydroxyl groups.Cross-dehydrogenative coupling reactions have been the focus of many researchers and have been shown to be powerful and convenient tools in organic synthesis.10 The activation of the C–H groups in two molecules allows application of starting materials without further functionalization. This simple process with high atomic economy provides an ideal transformation for the preparation of various target compounds. The Minisci reaction has been widely explored since the 1960s. Palmer and McIntyre first reported the hydroxymethylation of quinolone in the presence of hydroxylamine-O-sulphonic acid (HSA).11 Minisci further developed an Fe-catalyzed process that resulted in good yields.12 PdCl2 (ref. 13) and TiCl3 (ref. 14) were also shown to be efficient catalysts for the Minisci reaction. Metal-free reactions initiated by TBHP15 and M2S2O8 (M = Na, K, NH4)16 have also been developed. Very recently, as visible light-promoted processes find applications in organic synthesis, visible light-induced Minisci reactions have been reported.17 However, a strong oxidant, external acid, and complex system are always needed for these reactions. In our research, we found that Selectfluor could be used as a mild oxidant for the functionalizations of C–H groups in ethers, and the HF generated in situ could be made to participate in the reaction process.18 Herein, we report an Ag/Selectfluor-catalyzed Minisci reaction, in which Selectfluor was used as a mild oxidant and no external acid was necessary (Scheme 1).Open in a separate windowScheme 1Arylations of α sp3 C–H groups in alcohols.We chose quinaldine as the model substrate and carried out the reactions ( Entry AgNO3 (eq.) Selectfluor (eq.) Time (h) MeOH : H2Ob Yieldc (%) 1 0.5 0.25 4 3 : 1 Trace 2 0.5 0.5 4 3 : 1 7 3 0.5 1 4 3 : 1 24 4 0.5 4 4 3 : 1 76 5 1 4 4 3 : 1 88 6 2 4 4 3 : 1 89 7 1 4 4 1 : 1 88 8 1 4 4 9 : 1 96 9 1 4 2 9 : 1 93 10 1 4 6 9 : 1 93 11d 1 4 4 9 : 1 90 12e 1 4 4 9 : 1 85