首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6332篇
  免费   513篇
  国内免费   334篇
耳鼻咽喉   126篇
儿科学   122篇
妇产科学   108篇
基础医学   704篇
口腔科学   60篇
临床医学   937篇
内科学   888篇
皮肤病学   34篇
神经病学   479篇
特种医学   193篇
外国民族医学   4篇
外科学   619篇
综合类   748篇
预防医学   450篇
眼科学   180篇
药学   721篇
  1篇
中国医学   238篇
肿瘤学   567篇
  2024年   13篇
  2023年   59篇
  2022年   140篇
  2021年   242篇
  2020年   199篇
  2019年   171篇
  2018年   170篇
  2017年   161篇
  2016年   173篇
  2015年   205篇
  2014年   309篇
  2013年   286篇
  2012年   391篇
  2011年   466篇
  2010年   288篇
  2009年   197篇
  2008年   301篇
  2007年   358篇
  2006年   341篇
  2005年   356篇
  2004年   271篇
  2003年   231篇
  2002年   238篇
  2001年   128篇
  2000年   156篇
  1999年   197篇
  1998年   113篇
  1997年   117篇
  1996年   94篇
  1995年   97篇
  1994年   85篇
  1993年   75篇
  1992年   81篇
  1991年   63篇
  1990年   55篇
  1989年   58篇
  1988年   37篇
  1987年   32篇
  1986年   30篇
  1985年   21篇
  1984年   22篇
  1983年   18篇
  1982年   12篇
  1981年   9篇
  1980年   13篇
  1979年   15篇
  1978年   10篇
  1977年   9篇
  1973年   6篇
  1965年   8篇
排序方式: 共有7179条查询结果,搜索用时 508 毫秒
181.

Background

Tranexamic acid (TXA) has been successfully used to reduce bleeding in joint replacement. Recently local TXA has been advocated to reduce blood loss in total knee or hip replacement; however, this raised concerns about potential adverse effects of TXA upon the artificial joint replacement.

Materials and methods

In this biomechanical study we compared the effects of TXA and saline upon the following biomechanical properties of artificial joint materials—(1) tensile properties (ultimate strength, stiffness and Young’s modulus), (2) the wear rate using a multi-directional pin-on-plate machine, and (3) the surface topography of pins and plates before and after wear rate testing.

Results

There were no significant differences in tensile strength, wear rates or surface topography of either ultra-high-molecular-weight polyethylene pins or cobalt chromium molybdenum metal plates between specimens soaked in TXA and specimens soaked in saline.

Conclusion

Biomechanical testing shows that there are no biomechanical adverse affects on the properties of common artificial joint materials from using topical TXA.

Level of evidence

V  相似文献   
182.
Regulatory T (Treg) cells may participate in mediating a suppressive microenvironment that blunts successful anti-tumor immunotherapy. Recent studies show that CD8+ Treg cells might impede effective immune responses to established tumors. However, there is limited research regarding CD8+ Treg cells in ovarian cancer (OC) patients. Here, we investigated CD8+ Treg cells in OC patients and their in vitro induction. The immunohistochemistry of tumor-infiltrating lymphocytes revealed a significant correlation between the intratumoral CD8+ T cells and the forkhead box p3 (Foxp3)+ cells in the intraepithelial and stromal areas of advanced OC tissues. We examined the expression of Treg markers in CD8+ T cells from the peripheral blood and fresh tumor tissues of OC patients using flow cytometry. Our results indicated an increase in the CD8+ Treg cell subsets of OC patients compared with those in patients with benign ovarian tumors and healthy controls, including an increased expression of CD25, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), and Foxp3 and decreased CD28 expression. To demonstrate whether the tumor microenvironment could convert CD8+ effector T cells into suppressor cells, we used an in vitro transwell culturing system. Compared with the CD8+ T cells cultured alone, the CD8+ Treg cells induced in vitro by coculture with SK-OV-3/A2780 showed increased CTLA-4 and Foxp3 expression and decreased CD28 expression. In addition, the in vitro-induced CD8+ Treg cells inhibited naïve CD4+ T-cell proliferation, which was partially mediated through TGF-β1 and IFN-γ. Our study suggests that CD8+ Treg cells were increased in OC patients and could be induced in vitro, which may be the way that tumors limit antitumor immunity and evade immune surveillance.  相似文献   
183.
Objective: This study aims to explore the protection effect of bone marrow mesenchymal stem cells (BMSCs) on PC12 cells apoptosis mediated by transient axonal glycoprotein 1 (TAG1). Methods: PC12 cells were divided into control group, Aβ25-35 group and BMSCs + Aβ25-35 group. The effects of BMSCs on PC12 cells treated by Aβ25-35 were detected using MTT, Hoechst 33258 and Annexin V-FITC/PI staining methods. The expression levels of TAG1, β-amyloid precursor protein (APP), AICD and p53 were determined by RT-PCR and Western blotting methods. The expression levels of Bax and Bcl-2 were determined by Western blotting method. The activity of Caspase 3 was detected by spectrophotometric method. Results: MTT results showed that cell activity decreased after the treatment of 20 μM Aβ25-35 for 48 h (P<0.01) while it increased in BMSCs + Aβ25-35 group (P<0.01). Hoechst 33258 and Annexin V-FITC/PI staining results showed that Aβ25-35 could induce the apoptosis of PC12 cells while the apoptosis of PC12 cells was inhibited in BMSCs + Aβ25-35 group. RT-PCR and Western blotting methods showed that 20 μM Aβ25-35 could increase the expression levels of TAG1, APP, AICD and p53 (P<0.01) while they decreased in BMSCs + Aβ25-35 group (P<0.01). 20 μM Aβ25-35 could increase the expression levels of Bax and decrease the expression levels of Bcl-2 (P<0.01), while the expression levels of Bax decreased and the expression levels of Bcl-2 increase in BMSCs + Aβ25-35 group (P<0.01). 20 μM Aβ25-35 could enhance Caspase 3 activity while it decreased in BMSCs + Aβ25-35 group (P<0.01). Conclusions BMSCs with Aβ25-35 could inhibit the apoptosis of PC12 cells, which maybe related with TAG1/APP/AICD signal pathway.  相似文献   
184.
185.
目的探讨Framingham风险评分与遗忘型轻度认知障碍(amnestic mild cognitive impairment, aMCI)的相关性,以期为阿尔茨海默症的早期预防提供有意义的临床依据。 方法选取2018年1月至2019年12月浙江医院收治的124老年人,均行神经心理学评估,其中aMCI老年人54例(aMCI组),认知正常老年人70例(正常组)。比较两组老年人的Framingham风险评分,并分析aMCI老年人Framingham风险评分与认知功能的相关性。计量资料的组间比较采用t检验或非参数Mann-Whitney U检验,计数资料的比较采用χ2检验,Framingham风险评分与认知功能的相关性采用Spearman相关分析。 结果两组对象一般资料(包括Framingham风险评分的组成指标)的差异无统计学意义(P>0.05)。aMCI组Framingham风险评分中位数为24%,四分位数间距为22%;正常组Framingham风险评分中位数为16.7%,四分位数间距为22%;差异有统计学意义(Z=-2.721,P<0.01)。aMCI老年人Framingham风险评分与简易智能状态检查量表及听觉词语学习测验20 min延迟回忆评分均呈显著负相关(r=-0.203、-0.570,P<0.01)。 结论Framingham风险评分与老年人认知功能有关,可作为老年人认知功能障碍的预警参考指标。  相似文献   
186.
Regular participation in physical activity helps to prevent damage and maintain joint health in persons with haemophilia. This study describes self‐reported physical activity participation among a sample of people with haemophilia B in the US and measures its association with health‐related quality of life (HRQoL). Data on 135 participants aged 5–64 years were abstracted from Hemophilia Utilization Group Study Part Vb. The International Physical Activity Questionnaire assessed physical activity among participants aged 15–64 years, and the Children's Physical Activity Questionnaire abstracted from the Canadian Community Health Survey was used for participants aged 5–14 years. SF‐12 was used to measure HRQoL and the EuroQol (EQ‐5D‐3L) was used to measure health status for participants older than 18 years of age. PedsQL was used to measure HRQoL in children aged 5–18 years. Sixty‐two percent of participants in the 15–64 year‐old age cohort reported a high level of physical activity, 29% reported moderate activity and 9% reported low activity. For children aged 5–14 years, 79% reported participating in physical activity for at least 4 days over a typical week. Based on the 2008 Physical Activity Guidelines for Americans, 79% of adults achieved the recommended physical activity level. Multivariable regression models indicated that adults who engaged in a high level of physical activity reported EQ‐5D Visual Analogue Scale (VAS) scores that were 11.7 (= 0.0726) points greater than those who engaged in moderate/low activity, indicating better health outcomes. Among children, no statistically significant differences in health outcomes were found between high and moderate or low activity groups.  相似文献   
187.

Background

This study was designed to assess the prevalence of chronic kidney disease (CKD) and associated risk factors among the Chinese population in Taian, China.

Methods

A primary care-based cross-sectional study was conducted in Taian, China, from September to December 2012. Participants selected by a multi-stage stratified cluster sampling procedure were interviewed and tested for hematuria, albuminuria, estimated glomerular filtration rate (eGFR) and other clinical indices. Factors associated with CKD were analyzed by univariate and multivariate logistic regression analysis.

Results

A total of 14,399 subjects were enrolled in this study. The rates of hematuria, albuminuria and reduced eGFR were 4.20%, 5.25% and 1.89%, respectively. Approximately 9.49% (95% CI: 8.93%–10.85%) of the participants had at least one indicator of CKD, with an awareness of 1.4%. Univariate analyses showed that greater age, body mass index, and systolic and diastolic blood pressure; higher levels of serum creatinine, uric acid, fasting blood glucose, triglycerides, total cholesterol and low-density lipoprotein cholesterol; and lower eGFR were associated with CKD (p?<?0.05 each). Multivariate analysis showed that age, female gender, educational level, smoking habits, systolic blood pressure, and history of diabetes mellitus, hyperlipidemia, hypercholesterolemia and hyperuricemia were independent risk factors for CKD.

Conclusions

The prevalence of CKD in the primary care population of Taian, China, is high, although awareness is quite low. Health education and policies to prevent CKD are urgently needed among this population.
  相似文献   
188.
Hemodialysis (HD) is the most important treatment for patients with end‐stage renal disease (ESRD). Thrombocytopenia is a potential treatment complication related to dialysis. Under normal circumstances, the platelet count would slightly decrease within the first hour of HD, but get restored towards the end of procedure. In most patients, the platelet count can be maintained within the normal range, and the occurrence of thrombocytopenia is relatively rare in clinical practice. Therefore, the possibility of thrombocytopenia in HD patients is often ignored. Moreover, thrombocytopenia might be misdiagnosed and mistreated. At present, almost all articles on the subject, apart from some case reports, focus on pseudothrombocytopenia and heparin‐induced thrombocytopenia. In this review, we summarized various underlying causes, mechanisms, and diagnostic approaches to thrombocytopenia in HD patients. The review aims to provide a guide for clinicians interested in the causes and adequate treatment of thrombocytopenia.  相似文献   
189.
Cyclic di-AMP (c-di-AMP) is a recently discovered second messenger in bacteria. Most of work on c-di-AMP signaling has been done in Gram-positive bacteria, firmicutes, and actinobacteria, where c-di-AMP signaling pathways affect potassium transport, cell wall structure, and antibiotic resistance. Little is known about c-di-AMP signaling in other bacteria. Borrelia burgdorferi, the causative agent of Lyme disease, is a spirochete that has a Gram-negative dual membrane. In this study, we demonstrated that B. burgdorferi BB0619, a DHH-DHHA1 domain protein (herein designated DhhP), functions as c-di-AMP phosphodiesterase. Recombinant DhhP hydrolyzed c-di-AMP to pApA in a Mn2+- or Mg2+-dependent manner. In contrast to c-di-AMP phosphodiesterases reported thus far, DhhP appears to be essential for B. burgdorferi growth both in vitro and in the mammalian host. Inactivation of the chromosomal dhhP gene could be achieved only in the presence of a plasmid-encoded inducible dhhP gene. The conditional dhhP mutant had a dramatic increase in intracellular c-di-AMP level in comparison to the isogenic wild-type strain. Unlike what has been observed in Gram-positive bacteria, elevated cellular c-di-AMP in B. burgdorferi did not result in an increased resistance to β-lactamase antibiotics, suggesting that c-di-AMP''s functions in spirochetes differ from those in Gram-positive bacteria. In addition, the dhhP mutant was defective in induction of the σS factor, RpoS, and the RpoS-dependent outer membrane virulence factor OspC, which uncovers an important role of c-di-AMP in B. burgdorferi virulence.  相似文献   
190.
The spacer layer is a key component of fully printable mesoscopic perovskite solar cells, but its precise characteristics are far from being understood in relation to the device design. In the present work, we perform a detailed systematic study on the effects of spacer parameters, such as size of building blocks, layer thickness, etc., on properties of the perovskite filler, insulating ability and performance of fully printable mesoscopic perovskite solar cells by combining the techniques of time-resolved photoluminescence, high-resolution TEM, insulating resistance measurements, impedance spectroscopy and JV characteristics. Drawing on the deep understanding from these studies, we formulate key principles, which are anticipated to guide the design of the advanced spacer layer for fully printable mesoscopic perovskite solar cells.

Key principles and reasonable routes are proposed to advance the spacer layer design for fully printable mesoscopic perovskite solar cells.

Lead halide perovskite (PVSK) as a promising semiconducting material has been introduced as a light harvesting semiconductor because of its ease of fabrication and excellent physical properties, such as tunable bandgap, strong absorbance, long carrier diffusion length and shallow intrinsic trap state level.1–9 Extremely flat and compact perovskite thin film with large crystal size has gained particular attention to boost power conversion efficiency (PCE) by sequential deposition method, vapor deposition, solvent-annealing, solvent engineering, hot-casting method, intramolecular exchange methods, and additive, etc.10–16 Benefiting from rapid improvements in formation of high quality perovskite thin film, a certified PCE of 25.2% has been achieved.17 However, illumination stability in real environment still remains a serious challenge due to the inherent moisture and UV sensitivity of perovskite. Moreover, using expensive and rare metals as back contact, such as gold and silver, may limit large-scale production in the future. As the competing architecture of perovskite solar cells, TiO2/spacer/carbon (abbreviated as TSC) films based fully printable mesoscopic perovskite solar cells (FP-MPSC) have attracted a lot of researchers due to their low cost and printable large-scale production process.18–21 In this type of solar cell, carbon can efficiently collect hole from perovskite layer even without any other hole transporting materials.22,23 Most importantly, FP-MPSC could work with excellent illumination stability and heat-stress stability by filling TSC films with (5-AVA)xMA1−xPbI3 (5-AVA = 5-aminovaleric acid, MA = methylammonium), although the efficiency of 12.8% is still far behind from the most efficient solar cell.16,21,24Spacer, as an important part of FP-MPSC, plays a crucial role in obtaining high performance device. Basically, the spacer layer mainly burdens triple important tasks in the efficient mesoscopic perovskite solar cells. Firstly, the core function of spacer is to separate anode and cathode and to prevent electrons in TiO2 from transporting directly to carbon electrode. The separating property of spacer depends on spacer particle sizes, morphology, materials, etc. This requires that spacer layer has no cracking and has wide bandgap. Secondly, the perovskite confined in the mesopores of spacer layer can absorb photons transmitted through perovskite/TiO2 composite layer and have contribution to photocurrents. Thirdly, the holes produced in the perovskite/TiO2 composite layer have to go through perovskite/spacer composite layer to reach carbon electrode. And the electrons produced in the perovskite/spacer composite layer have to go through perovskite/spacer composite layer to reach TiO2 electrode. Because spacer layer has these important functions, some research on spacer layer have been carried out. Recently, Al2O3 or ZrO2 spacer layer was compared with respect to their pore size.25 However, conclusion of the effect of pore size in two different materials was incomplete. The effect of spacer layer thickness was simply discussed both in monolithic dye-sensitized solar cells and FP-MPSC.20,26 The morphology of spacer layer was also improved to increase PCE of FP-MPSC.27 Although these researches made some progress, there are no clear standards that what should an ideal spacer layer satisfy. Therefore, it is urgent to carry out detailed study on how the parameters of spacer affect the above functions and performance of mesoscopic printable perovskite solar cells.In the present study, the effects of size of building blocks of spacer layer, thickness of spacer layer on property of perovskite crystals, insulating property, and performance of mesoscopic perovskite solar cells were investigated in details. Based on these deep understandings, critical principles to design advanced spacer layer are proposed.ZrO2 is used as spacer material due to its large band gap and high conduction band energy level. There are five different sizes of spacer building blocks in this study. The average particle sizes of spacer are measured to be about 5 nm, 10 nm, 20 nm, 60 nm and 100 nm, respectively, and hereafter referred to as S5, S10, S20, S60, S100 spacer, respectively. SEM images of as-prepared spacer films using these building blocks are shown in Fig. 1. X-ray diffraction patterns of spacer film with different particle sizes are presented in Fig. 1f, indicating that the five spacer films were all tetragonal crystal phase as majority phase. From Scherrer equation, the crystal sizes of spacer building blocks were calculated to be about 5 nm, 10 nm, 20 nm, 30 nm, 30 nm, respectively. These results indicated that the S60 and S100 particles are consisted of 30 nm sized crystal ZrO2. Fig. 1 presents that there is a large difference in surface morphology with particle size increasing. There are cracks in S5 and S10 spacer films and micrometer scale pores exist in the S100 spacer, while the surface of S20 and S60 are very uniform without defects.Open in a separate windowFig. 1SEM images of spacer films with particle size of 5 nm (a), 10 nm (b), 20 nm (c), 60 nm (d) and 100 nm (e), respectively. (f) XRD patterns of spacer film with different building block sizes.During solvent evaporation of perovskite precursor, perovskite crystal growth is restricted by randomly interconnected mesopores of spacer film, leading to nanoscale crystal size and random crystal orientation, as observed by high resolution transmission electron microscope (Fig. 2a), in which clear crystal lattices of perovskite crystals can be distinguished from spacer particles. Meanwhile, the mesopores of spacer film is fulfilled with perovskite materials, providing continuous channels for charge carriers. The crystal size of perovskite material in spacer film is strongly influenced by mesopore size of spacer layer, as seen in XRD intensity of perovskite at 2θ of about 14.2° (Fig. 2b). There is an apparent trend that the intensity increased with increasing the particle size of spacer film. As a reference, perovskite was also deposited on bare glass, which exhibited the best crystallinity. The calculated sizes of perovskite from XRD spectra are 4.3 nm, 3.9 nm, 6.2 nm, 11.5 nm, and 12.6 nm, respectively, for the S5, S10, S20, S60, and S100 spacer layer. Apparently, the sizes of perovskite crystals confined in the spacer layer are smaller than the average pore sizes of spacer layer measured by N2 absorption/desorption isotherms (Table S1). The high-resolution TEM image also gives consistent results. For example, the sizes of perovskite crystals confined in the S20 spacer layer are between 8.4 nm to 12.7 nm measured in the TEM image (Fig. 2a). The infiltrated perovskite started to nucleate onto the heterogeneous surface of spacer building blocks with high surface area, resulting to multiple nucleation centers and small crystal size. In order to evaluate the effect of spacer particle size on physiochemical properties of perovskite, the band-edge emission spectra of perovskite/spacer composite film were measured in Fig. 2c. The band-edge emission spectrum of perovskite deposited on bare glass peaked at 762 nm (with photon energy of 1.627 eV). As the particle size of spacer film decreased, a blue shift of the band-edge photoluminescence occurred, and linewidth broadened. The peak position of perovskite emission spectra can be tuned in the range of 33 nm through varying the pore size of spacer film. The increase of emission line width at grain boundaries can be attributed to disorder and defects of perovskite,14,15 which also led to the decrease of lifetime in time-resolved PL (Fig. 2d). Perovskite film grown on glass has the lifetime of 141.9 ns. However, perovskite grown in spacer film decreased to 0.5 ns, 8.4 ns, 24.1 ns, 37.2 ns, 53.7 ns, for S5, S10, S20, S60, S100, respectively.Open in a separate windowFig. 2(a) High resolution transmission electron microscope image of perovskite/S20 spacer film composite. (b) XRD of perovskite/spacer film composite. (c) Steady PL emission spectra and (d) time-resolved PL of perovskite/spacer film composite.The particle size of spacer also has large effect on insulating ability of spacer films with the same thickness. FTO/spacer/carbon configuration was designed to measure the insulating ability of spacer layers. In ideal conditions, the resistance between carbon and FTO, defined as insulating resistance (RI), should be infinite, indicating that there is not any leakage current from ideal insulating spacer. However, all of the measured resistance has finite values, summarized in 28–31Photovoltaic parameters of mesoscopic perovskite solar cells based on spacer with different building block sizes
SpacerLifetime (ns) R I (Ω) J SC (mA cm−2) V OC (mV)FF (%)PCE (%)
No spacer3016.21605666.52
S50.5150016.06871679.42
S108.497018.269087111.77
S2024.196019.108717111.86
S6037.280018.198657011.08
S10053.730018.628086710.10
Open in a separate window Fig. 3a is the scheme showing the layout of FP-MPSC. The influence of the size of spacer layer building block on the photocurrent density–voltage (JV) curves of the (5-AVA)xMA1−xPbI3 perovskite devices without and with spacer layer was evaluated in Fig. 3b and photovoltaic parameters are summarized in 20 The VOC increased significantly from 605 mV to above 808 mV, when the device added spacer layers. The device with S100 spacer, which had best crystallinity and longest photoluminescence lifetime, is expected to have excellent performance. But S100 spacer has relatively low VOC of 808 mV and low PCE of 10.10%. This is resulted from poorest insulating ability of S100 spacer among these spacer films. Balancing from photoluminescence property of perovskite confined in spacer layer and insulating property of spacer layer, 20 nm-sized S20 spacer film had the best performance with efficiency of 11.86%. It is common sense that devices with large perovskite crystal size with low trap density can approach VOC to the limit of theoretical value.1,32,33 The blue shift of the band-edge photoluminescence and decreased lifetime of perovskite in spacer film may explain the relatively low VOC (less than 1.0 V) relative to conventional planar perovskite solar cells (VOC was more than 1.1 V) in which the size of perovskite crystal was larger than 500 nm. Spacer film with large pore size and excellent insulating property are expected to further improve VOC of FP-MPSC. The observed quantum size effect of perovskite nanocrystals confined in spacer mesopores in some extents results from templating effect of spacer nanoparticles and unmatched crystal lattices. Matched crystal lattices may mitigate the quantum size effect by heteroepitaxy via reduced nucleation density.34Open in a separate windowFig. 3(a) Scheme showing the layout of FP-MPSC. (b) JV curves of devices based on spacer film with different building block sizes.The effect of thickness of spacer film on mesoscopic perovskite solar cells was briefly discussed in our previous study.20,35 Here, detailed study from the points of insulating ability and impedance was carried out to clarify the mechanism on how spacer film affects the performance of FP-MPSC.All photovoltaic parameters depended on the thickness of spacer film (Fig. 4a). Dark current (Fig. 4b) is suppressed by increasing thickness of spacer film, which is in good agreement with that VOC reached maximum value and remained stable when thickness is above 2.64 μm. The VOC has coincident trends with insulating resistance in Fig. 4c. Therefore, VOC has strong relationship with insulating ability of spacer film when other conditions are the same. JSC reached maximum value and remained stable when thickness is above 3.31 μm by harvesting more photons. JSC decreased with over 5 μm-thick spacer layer resulted from recombination. PCE reached maximum value when thickness is about 4.84 μm. The device without spacer film has poorest VOC, so there is a need to avoid the damage of spacer film when screen printing of carbon film onto spacer film. The dependence of JSC on thickness of spacer film and different trends between JSC and VOC indicate that perovskite confined in spacer film can generate charge carriers, playing similar role of perovskite capping layer in conventional mesoporous/planar bilayer perovskite solar cells. The fill factor (FF) was not linearly decreased when thickness of spacer film was increased, although the transporting distance of charge carriers was increased. This result was different from dye-sensitized solar cells, where FF was linearly decreased when thickness of spacer film was increased.26Open in a separate windowFig. 4(a) Photovoltaic parameters dependence on thickness of S20 spacer film. (b) Dark current of FP-MPSC based on different thickness of spacer film. (c) Insulating resistance (RI) of spacer film with different thickness.To further elucidate the relation between thickness of the spacer film and the photovoltaic performance, impedance spectra (IS) were measured. Before analyzing the spectra, physical process correlated to each semicircle should be identified qualitatively. Up to now, IS analysis on fully printable mesoscopic perovskite solar cells simply applied existing models of dye-sensitized solar cells or planar perovskite solar cells. To assure reliability, IS are analyzed by varying thickness of spacer film, with or without meso-TiO2 to assign high frequency and low frequency semicircles. The photographs of devices used to measure the IS are shown in Fig. S1 and S2. The typical Nyquist plot and Bode plot of the FP-MPSC device with different spacer film thickness measured at 0.3 V, under weak illumination was plotted in Fig. 5. The full IS can be found in Fig. S3 and S4, in the ESI. The IS in high frequency part was modelled with one resistance paralleling with one constant phase element and adding another series resistance, as depicted in Fig. S5. The fitting resistance and capacitance was normalized with active area, as presented in Fig. 6. Under weak light (0.1 sun), series resistances (Rs) are almost between 10–15 Ω cm2, remaining constant in the whole bias voltage range while high frequency resistances (RPerovskite) increased clearly with increasing thickness of spacer film and associating capacitance decreased with increasing thickness of spacer film. The change in high frequency semicircle is not related to carbon/perovskite interface because the contact of carbon/perovskite interface was unchanged. Therefore, the change in high frequency semicircle is originated from thickness varying of spacer film. Integrating the above features, it is concluded that low frequency semicircle is related to TiO2/perovskite interface, which is in good agreement with the usual understanding that charge carrier recombination in TiO2/perovskite interface is slow process, and high frequency semicircle is related to both perovskite confined in spacer film and carbon/perovskite interface. This was consistent with other researcher''s results in which one extra feature related to perovskite was observed from high to intermediate frequency.36 The new feature leads to abrupt decrease of phase value of constant phase element below 0.4 V, as can be clearly seen in Fig. 6d. The new feature is also clear in the Nyquist plot and Bode plot in Fig. 5b and c, where two RC circuit components merge at high frequency (104–105 Hz). One simple model to interpreting this new feature is to consider the perovskite/spacer composite layer as a standard parallel plate capacitor, and the capacitance can be written as eqn (1).C = ε0εS/d1where ε0 is vacuum dielectric constant, ε is relative dielectric constant of perovskite, S is the active area of device, and d is the thickness of spacer layer. Because the spacer layer is wide bandgap materials, there is little charge in the spacer itself. The charge transport is mainly from perovskite confined in the spacer layer. The normalized capacitance with active area will be reciprocal of d, which is in good consistent with the trend of fitting capacitance (RPerovskite, in Fig. 6c). Based on the above results, it can be concluded that the extra feature in high to intermediate frequency is resulting from charge transport of perovskite confined in the spacer layer. This conclusion is very consistent with the analysis of the geometrical capacitance of the perovskite layer in the planar perovskite solar cells.37 The thick spacer layer of over 2.5 μm with enough insulating ability would definitely increase the charge carrier transport length through the spacer layer and cause severe recombination considering the relatively smaller perovskite nanocrystals.Open in a separate windowFig. 5Nyquist plot (a and b) and Bode plot (c) of the FP-MPSC device with different spacer film thickness measured at 0.3 V, under weak illumination (0.1 sun).Open in a separate windowFig. 6Parameters obtained from high frequency (∼102–106 Hz) semicircle IS analysis of the FP-MPSC device with different spacer film thickness measured at between 1.1 V and 0 V, under weak illumination (0.1 sun). (a) Series resistance. (b) Resistance related to perovskite. (c) Capacitance related to perovskite and (d) associated constant phase value.Combining the analysis about the effect of building block size and thickness of spacer layer, the bottlenecks of current spacer layer and infiltrated perovskite are summarized in left picture of Fig. 7. Perovskite layer embedded in mesoporous matrix of spacer layer are usually composed of crystals with size of tens of nanometers. Although observed quantum size effect may have useful application in LED or other optoelectronic fields, the limited charge transport ability in quantum dots is detrimental for achieving high PCE in photovoltaic device due to serious charge carrier recombination. Moreover, the thickness of spacer layer has to be several micrometers to insure enough insulating ability, which further hinders the charge transport to charge carrier selective layer. These two unfavorable factors decrease the potentially achievable PCE. It has been proved that grain boundaries are not beneficial for attaining high performance perovskite solar cells.1 Monolayer perovskite crystals in vertical direction are usually deposited on charge-selective layer in order to reduce recombination near grain boundary. According to the absorption coefficient of MAPbI3 perovskite, 1 μm thick MAPbI3 perovskite layer can absorb over 95% incident light at wavelength of 750 nm.15,33 Fixing the porosity of spacer layer to be 40%, 2.5 μm thick spacer layer has equivalent 1 μm thickness of perovskite layer. Considering that the size of perovskite crystals is less than 100 nm, the ratio of length of spacer thickness to size of perovskite crystals is over 25, which means that charge generated in spacer/perovskite layer has encountered at least 25 grain boundaries before reaching charge selective layer. To overcome these issues, the ideal features of spacer layer and infiltrated perovskite are illustrated in right picture of Fig. 7. Porous single-crystal perovskite models grown in matrix of porous spacer template with 2D arrays or 3D of structured films are more favorable for achieving high PCE.38 Perovskite nanorod has high mobility due to confined charge transport. It is known in the zeolite field that meso-crystal materials can grow from one ordered template, which needs controlled template–precursor interaction.39–41 In fact, porous single crystal MAPbI3 has been realized via additive in perovskite precursor solution.42 Some favorable phenomena has been also observed in investigating the crystallization of perovskite in mesopores of TSC films. For example, the crystal growth with preferential orientation was realized via moisture-induced crystallization process in the NH4Cl–PVSK complex.43 Even the perovskite crystal growth was significantly templated by scaffold, pronounced positive effect was occurred in photovoltaic performance. Therefore, exploring methods to grow mesoporous single-crystal perovskite with less grain boundaries and higher mobility in ordered spacer layer would further promote PCE of FP-MPSC device.Open in a separate windowFig. 7Illustration to show problems of current spacer layer and infiltrated perovskite, and proposed features of ideal spacer layer and infiltrated perovskite.Another issue to overcome is the unideal insulating ability of spacer film. The melting point of ZrO2 is about 2700 degrees. Sub-micrometer to nanometer ZrO2 is usually used to decrease the sintering temperature below 1000 degrees in the ceramic field.31 The particle size of ZrO2 has to be small enough to be sintered at allowed temperatures (the FTO glass will soften when T > 550 degrees).44 The insulating ability is mainly associated with porosity and interparticle connection. The porosity is similar for all particle size. The different insulating ability arises mainly from interparticle connection. To improve insulating ability, low-melting point wide bandgap nanomaterials is preferred as building blocks. Aluminum oxide, silica, or ternary oxides may provide better choice as spacer building blocks.45 Recently, by depositing a thin layer of Al2O3 onto surface of mesoporous TiO2 before printing spacer layer, the ZrO2 thickness was reduced from 3 μm to 1.2 μm while retaining comparable device performance.35  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号