Acute pancreatitis (AP) is one of the most common causes of hospitalization for gastrointestinal diseases, with high morbidity and mortality. Endoplasmic reticulum stress (ERS) and Gasdermin D (GSDMD) mediate AP, but little is known about their mutual influence on AP. Diosgenin has excellent anti-inflammatory and antioxidant effects. This study investigated whether Diosgenin derivative D (Drug D) inhibits L-arginine-induced acute pancreatitis through meditating GSDMD in the endoplasmic reticulum (ER). Our studies were conducted in a mouse model of L-arginine-induced AP as well as in an in vitro model on mouse pancreatic acinar cells. The GSDMD accumulation in ER was found in this study, which caused ERS of acinar cells. GSDMD inhibitor Disulfiram (DSF) notably decreased the expression of GSDMD in ER and TXNIP/HIF-1α signaling. The molecular docking study indicated that there was a potential interaction between Drug D and GSDMD. Our results showed that Drug D significantly inhibited necrosis of acinar cells dose-dependently, and we also found that Drug D alleviated pancreatic necrosis and systemic inflammation by inhibiting the GSDMD accumulation in the ER of acinar cells via the TXNIP/HIF-1α pathway. Furthermore, the level of p-IRE1α (a marker of ERS) was also down-regulated by Drug D in a dose-dependent manner in AP. We also found that Drug D alleviated TXNIP up-regulation and oxidative stress in AP. Moreover, our results revealed that GSDMD-/- mitigated AP by inhibiting TXNIP/HIF-1α. Therefore, Drug D, which is extracted from Dioscorea zingiberensis, may inhibit L-arginine-induced AP by meditating GSDMD in the ER by the TXNIP /HIF-1α pathway. 相似文献
The transient receptor potential vanilloid subtype 1 (TRPV1) channel is considered to play an important regulatory role in the process of pain. The purpose of this study is to observe the change characteristics of TRPV1 channel in MSU-induced gouty arthritis and to find a new target for clinical treatment of gout pain.
Methods
Acute gouty arthritis was induced by injection of monosodium urate (MSU) crystals into the ankle joint of mice. The swelling degree was evaluated by measuring the circumference of the ankle joint. Mechanical hyperalgesia was conducted using the electronic von Frey. Calcium fluorescence and TRPV1 current were recorded by applying laser scanning confocal microscope and patch clamp in dorsal root ganglion (DRG) neurons, respectively.
Results
MSU treatment resulted in significant inflammatory response and mechanical hyperalgesia. The peak swelling degree appeared at 12 h, and the minimum pain threshold appeared at 8 h after MSU treatment. The fluorescence intensity of capsaicin-induced calcium response and TRPV1 current were increased in DRG cells from MSU-treated mice. The number of cells that increased calcium response after MSU treatment was mainly distributed in small-diameter DRG cells. However, the action potential was not significantly changed in small-diameter DRG cells after MSU treatment.
Conclusions
These findings identified an important role of TRPV1 in mediating mechanical hyperalgesia in MSU-induced gouty arthritis and further suggest that TRPV1 can be regarded as a potential new target for the clinical treatment of gouty arthritis.