首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   797篇
  免费   46篇
  国内免费   4篇
耳鼻咽喉   5篇
儿科学   57篇
妇产科学   11篇
基础医学   99篇
口腔科学   10篇
临床医学   73篇
内科学   162篇
皮肤病学   27篇
神经病学   37篇
特种医学   20篇
外科学   93篇
综合类   57篇
预防医学   59篇
眼科学   5篇
药学   92篇
中国医学   9篇
肿瘤学   31篇
  2023年   2篇
  2022年   13篇
  2021年   34篇
  2020年   17篇
  2019年   18篇
  2018年   19篇
  2017年   16篇
  2016年   24篇
  2015年   24篇
  2014年   38篇
  2013年   43篇
  2012年   61篇
  2011年   66篇
  2010年   40篇
  2009年   39篇
  2008年   34篇
  2007年   50篇
  2006年   27篇
  2005年   31篇
  2004年   26篇
  2003年   13篇
  2002年   17篇
  2001年   14篇
  2000年   14篇
  1999年   7篇
  1998年   11篇
  1997年   9篇
  1996年   11篇
  1994年   7篇
  1993年   14篇
  1992年   9篇
  1991年   14篇
  1990年   7篇
  1989年   11篇
  1988年   6篇
  1987年   8篇
  1986年   11篇
  1985年   7篇
  1984年   8篇
  1983年   2篇
  1982年   5篇
  1981年   3篇
  1977年   2篇
  1974年   2篇
  1973年   2篇
  1971年   2篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有847条查询结果,搜索用时 11 毫秒
31.
Autophagy is one of the well-known pathways to accelerate the clearance of protein aggregates, which contributes to the therapy of neurodegenerative diseases. Although there are numerous reports that demonstrate the induction of autophagy with small molecules including rapamycin, trehalose and lithium, however, there are few reports mentioning the clearance of aggregate-prone proteins through autophagy induction by nanoparticles. In the present article, we have demonstrated that europium hydroxide [EuIII(OH)3] nanorods can reduce huntingtin protein aggregation (EGFP-tagged huntingtin protein with 74 polyQ repeats), responsible for neurodegenerative diseases. Again, we have found that these nanorods induce authentic autophagy flux in different cell lines (Neuro 2a, PC12 and HeLa cells) through the expression of higher levels of characteristic autophagy marker protein LC3-II and degradation of selective autophagy substrate/cargo receptor p62/SQSTM1. Furthermore, depression of protein aggregation clearance through the autophagy blockade has also been observed by using specific inhibitors (wortmannin and chloroquine), indicating that autophagy is involved in the degradation of huntingtin protein aggregation. Since [EuIII(OH)3] nanorods can enhance the degradation of huntingtin protein aggregation via autophagy induction, we strongly believe that these nanorods would be useful for the development of therapeutic treatment strategies for various neurodegenerative diseases in near future using nanomedicine approach.  相似文献   
32.
Hematological and plasma chemistry indices are important parameters for the evaluation of fish physiological status. In this study, we determined the results of selected hematological and plasma biochemical profiles in Cirrhinus mrigala captured from the wild in a tropical climate of India. Blood was analyzed using standard techniques, and differences in hematological parameters including hemoglobin concentration, erythrocyte count, total leukocyte count, hematocrit, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC) of fish were compared according to sex and different seasons. Analysis of variance showed that there were significant differences (p?<?0.05) between sexes, and the results indicated that blood parameters levels between the sexes in summer were significantly different than that measure in other seasons except MCH and MCHC value. The number of total leukocyte levels was found to be higher in female fish especially in reproductive seasons (summer), but the levels of hemoglobin, hematocrit, and MCV values were high in male fish in an annual period. However, there was no difference in MCH and MCHC values between the sexes and seasons throughout the study period. These may be related to season of sampling and changing physiological cycles during these months. Differences were noted in plasma lipid, cholesterol, and glucose level in the summer season, but the higher amount of plasma protein was found in spring and winter in male and female fish, respectively. In conclusion, monitoring fish hematological and biochemical parameters essentially can be a way to evaluate the physiological and health status of their populations, which may be a useful indicator of the environmental status.  相似文献   
33.
Herein, we present the development of a visible-light-driven magnetically retrievable nanophotocatalyst made of porous ruthenium nanoparticles supported on magnetic carbon nitride (g-C3N4/Fe3O4/p-RuNP) for the facile removal/degradation of aromatic amines and azo dyes from wastewater. Aromatic amines and azo-based dyes in water bodies are highly toxic and carcinogenic even at very low concentrations and are difficult to separate because of their high solubility. Our nanocatalyst can efficiently degrade/decompose the aromatic amines and azo dyes under visible light (LED/sunlight) at room temperature and in a wide pH range (pH 5.0–9.0) without using any external chemicals. The magnetic property of the nanocatalyst facilitates its efficient and facile separation from the reaction mixture for reuse in multiple photocatalytic cycles. The nanocatalyst-based degradation of azo dyes and aromatic amines presented here is simple and convenient in terms of efficiency, energy, reusability and cost. The process also does not require any external chemicals and forms gaseous/less harmful end products.

A magnetically separable and recyclable g-C3N4/Fe3O4/porous ruthenium nanocatalyst display excellent photocatalytic degradation of water-soluble aromatic amines and azo dyes at ambient condition.  相似文献   
34.
Due to the long half-life of 137Cs (t1/2 ∼ 30 years), the selective extraction of cesium (Cs) from high level liquid waste is of paramount importance in the back end of the nuclear fuel cycle to avoid long term surveillance of high radiotoxic waste. As 1,3-di-octyloxycalix[4]arene-crown-6 (CC6) is suggested to be a promising candidate for selective Cs extraction, the improvement in the Cs extraction efficiency by CC6 has been investigated through the optimization of the effect of dielectric media on the extraction process. The effects of the feed acid (HNO3, HCl, and HClO4) and the composition of the diluents for the ligand in the organic phase on the extraction efficiency of Cs have been investigated systematically. In 100% n-octanol medium, Cs is found to form a 1 : 1 ion-pair complex with CC6 (0.03 M) providing a very high distribution ratio of DCs ∼ 22, suggesting n-octanol as the most suitable diluent for Cs extraction. No significant interference of other relevant cations such as Na, Mg and Sr was observed on the DCs value in the optimized solvent system. Density functional theory (DFT) based calculations have been carried out to elucidate the reason of ionic selectivity and enhanced Cs extraction efficiency of CC6 in the studied diluent systems. In addition to the ionic size-based selectivity of the crown-6 cavity, the polarity of the organic solvent system, the hydration energy of the ion, and the relative reorganization of CC6 upon complexation with Cs are understood to have roles in achieving the enhanced efficiency for the extraction of Cs by the CC6 extractant in nitrobenzene medium.

Separation scheme was developed for selective extraction of long-lived fission product 137Cs using substituted calix crown 6 ether from aqueous acidic solution.  相似文献   
35.
Insulin inhibits platelet aggregation through nitric oxide synthesis by stimulating platelet insulin activated nitric oxide synthase. Impaired platelet insulin activated nitric oxide synthase in acute myocardial infarction (AMI) patients had been reported and thus our aim was to identify and isolate the factors impairing insulin activated nitric oxide in acute myocardial infarction patients’ plasma and study its effect on platelets aggregation in vitro. The insulin activated nitric oxide synthase inhibitor was identified as a protein and was purified from the plasma of AMI subjects using DEAE cellulose and Sephadex G-50 column, molecular weight determined by SDS-PAGE, nitric oxide quantified by methaemoglobin method, inhibitor protein quantified in plasma by immunoblot and ELISA, platelet aggregation studies done using an aggregometer, thromboxane-A2 in the platelets determined by radioimmunoassay, 125I-insulin radioligand binding studies done using normal subject platelets. The purified nitric oxide synthase inhibitor protein was ~66 kDa, concentration in AMI subjects’ plasma varied from 114 to 9,090 μM and was undetected in normal subjects’ plasma. The inhibitor protein competes with insulin for insulin receptor binding sites. The Incubation of the normal subject PRP with 5.0 μM inhibitor for 30 min followed by 0.4 μM ADP addition caused platelet aggregation in vitro, 130 μM aspirin or 400 μU insulin/ml addition was able to abrogate 0.4 μM ADP induced platelet aggregation even in the presence of 5.0 μM inhibitor. A potent inhibitory protein against insulin activated nitric oxide synthase in platelets appears in circulation of AMI subjects impairing nitric oxide production, potentiating ADP induced platelet aggregation and increasing the thromboxane-A2 level in platelets.  相似文献   
36.
37.
Basic fibroblast growth factor (bFGF) is a hematopoietic cytokine that stimulates stromal and stem cell growth. It binds to a glycosylphosphatidylinositol (GPI)-anchored heparan sulfate proteoglycan on human bone marrow (BM) stromal cells. The bFGF- proteoglycan complex is biologically active and is released by addition of exogenous phosphatidylinositol-specific phospholipase C. In this study, we show the presence of an endogenous GPI-specific phospholipase D (GPI-PLD) that releases the bFGF-binding heparan sulfate proteoglycan and the variant surface glycoprotein (a model GPI-anchored protein) from BM cultures. An involvement of proteases in this process is unlikely, because released proteoglycan contained the GPI anchor component, ethanol-amine, and protease inhibitors did not diminish the release. The mechanism of release is likely to involve a GPI-PLD and not a GPI-specific phospholipase C, because the release of variant surface glycoprotein did not reveal an epitope called the cross- reacting determinant that is exposed by phospholipase C-catalyzed GPI anchor cleavage. In addition, phosphatidic acid (which is specifically a product of GPI-PLD-catalyzed anchor cleavage) was generated during the spontaneous release of the GPI-anchored variant surface glycoprotein. We also detected GPI-PLD-specific enzyme activity and mRNA in BM cells. Therefore, we conclude that an endogenous GPI-PLD releases bFGF-heparan sulfate proteoglycan complexes from human BM cultures. This mechanism of GPI anchor cleavage could be relevant for mobilizing biologically active bFGF in BM. An endogenous GPI-PLD could also release other GPI-anchored proteins important for hematopoiesis and other physiologic processes.  相似文献   
38.
39.
Invasive bacterial and fungal infections have notably increased the burden on the health care system and especially in immune compromised patients. These invasive bacterial and fungal species mimic and interact with the host extracellular matrix and increase the adhesion and internalization into the host system. Further, increased resistance of traditional antibiotics/antifungal drugs led to the demand for other therapeutics and preventive measures. Presently, metallic nanoparticles have wide applications in health care sectors. The present study has been designed to evaluate the advantage of Ag/Sn–SnO2 composite nanoparticles over the single oxide/metallic nanoparticles. By using in silico molecular docking approaches, herein we have evaluated the effects of Ag/Sn–SnO2 nanoparticles on adhesion and invasion responsible molecular targets such as LpfD (E. coli), Als3 (C. albicans) and on virulence/resistance causing PqsR (P. aeruginosa), RstA (Bmfr) (A. baumannii), FoxA (K. pneumonia), Hsp90 and Cyp51 (C. albicans). These Ag/Sn–SnO2 nanoparticles exhibited higher antimicrobial activities, especially against the C. albicans, which are the highest ever reported results. Further, Ag/Sn–SnO2 NPs exhibited interaction with the heme proionate residues such as Lys143, His468, Tyr132, Arg381, Phe105, Gly465, Gly464, Ile471 and Ile304 by forming hydrogen bonds with the Arg 381 residue of lanosterol 1 4α-demethylase and increased the inhibition of the Candida strains. Additionally, the Ag/Sn–SnO2 nanoparticles exhibited extraordinary inhibitory properties by targeting different proteins of bacteria and Candida species followed by several molecular pathways which indicated that it can be used to eliminate the resistance to traditional antibiotics.

Mesoporous Ag/Sn–SnO2 composite nanoparticles exhibits extraordinary inhibitory properties by targeting different proteins of bacteria and Candida species which can be used to eliminate the resistance of traditional antibiotics.  相似文献   
40.
Slovick  FT; Abboud  CN; Brennan  JK; Lichtman  MA 《Blood》1985,66(5):1072-1079
The growth of human eosinophil progenitors (CFU-Eo) and the modulation of growth by hydrocortisone were studied as functions of the presence of lymphocytes and monocytes in marrow cells under study; and the source of colony-stimulating factors, specifically, media conditioned by macrophage-like cell line, GCT; phytohemagglutinin-stimulated mononuclear cells (PHA-LCM); or the T cell line, MO. CFU-Eo growth was greatest in marrow containing accessory cells as compared to marrow depleted of accessory cells; and in marrow treated with phytohemagglutinin-stimulated leukocyte conditioned media (PHA-LCM) or MO (T cell line)-conditioned medium (MO-CM) as compared with GCT cell- conditioned medium (GCT-CM). Hydrocortisone reproducibly inhibited eosinophil progenitor growth in unfractionated marrow stimulated by GCT- CM. This effect was abrogated by admixing irradiated mononuclear cells or T lymphocytes with the target marrow or by adding interleukin 1 or interleukin 2 (IL-1, IL-2). Inhibition by hydrocortisone did not occur when monocyte and T lymphocyte depleted marrow was studied. Unlike GCT- CM, MO-CM and PHA-LCM stimulated equal proportions of eosinophil progenitors in nondepleted and accessory cell-depleted marrow and demonstrated less hydrocortisone inhibition. However, both GCT-CM and PHA-LCM produced in the presence of hydrocortisone stimulated significantly fewer CFU-Eos in both unfractionated and accessory cell- depleted marrow target populations. These results indicate that the growth of CFU-Eo and inhibition of growth by hydrocortisone is a direct function of a monocyte-T cell interaction and probably is mediated through effects on the production/release of eosinophil colony stimulating factor (Eo-CSF).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号