首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12208篇
  免费   472篇
  国内免费   89篇
耳鼻咽喉   166篇
儿科学   273篇
妇产科学   156篇
基础医学   1807篇
口腔科学   288篇
临床医学   1087篇
内科学   2307篇
皮肤病学   444篇
神经病学   918篇
特种医学   540篇
外科学   1675篇
综合类   103篇
一般理论   2篇
预防医学   525篇
眼科学   306篇
药学   1088篇
  2篇
中国医学   150篇
肿瘤学   932篇
  2024年   43篇
  2023年   103篇
  2022年   263篇
  2021年   412篇
  2020年   243篇
  2019年   297篇
  2018年   324篇
  2017年   270篇
  2016年   393篇
  2015年   526篇
  2014年   617篇
  2013年   674篇
  2012年   1049篇
  2011年   958篇
  2010年   584篇
  2009年   526篇
  2008年   678篇
  2007年   714篇
  2006年   617篇
  2005年   552篇
  2004年   467篇
  2003年   360篇
  2002年   337篇
  2001年   254篇
  2000年   239篇
  1999年   188篇
  1998年   95篇
  1997年   59篇
  1996年   44篇
  1995年   51篇
  1994年   38篇
  1993年   23篇
  1992年   68篇
  1991年   59篇
  1990年   74篇
  1989年   62篇
  1988年   51篇
  1987年   39篇
  1986年   39篇
  1985年   43篇
  1984年   28篇
  1983年   24篇
  1980年   22篇
  1979年   34篇
  1978年   34篇
  1977年   23篇
  1976年   19篇
  1975年   26篇
  1974年   19篇
  1973年   18篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
41.
A quarter of all anthropogenic methane emissions in the United States are from enteric fermentation, primarily from ruminant livestock. This study was undertaken to test the effect of a methane inhibitor, 3-nitrooxypropanol (3NOP), on enteric methane emission in lactating Holstein cows. An experiment was conducted using 48 cows in a randomized block design with a 2-wk covariate period and a 12-wk data collection period. Feed intake, milk production, and fiber digestibility were not affected by the inhibitor. Milk protein and lactose yields were increased by 3NOP. Rumen methane emission was linearly decreased by 3NOP, averaging about 30% lower than the control. Methane emission per unit of feed dry matter intake or per unit of energy-corrected milk were also about 30% less for the 3NOP-treated cows. On average, the body weight gain of 3NOP-treated cows was 80% greater than control cows during the 12-wk experiment. The experiment demonstrated that the methane inhibitor 3NOP, applied at 40 to 80 mg/kg feed dry matter, decreased methane emissions from high-producing dairy cows by 30% and increased body weight gain without negatively affecting feed intake or milk production and composition. The inhibitory effect persisted over 12 wk of treatment, thus offering an effective methane mitigation practice for the livestock industries.The livestock sector is a significant source of greenhouse gas (GHG) emissions in the United States and globally (1, 2). In the United States, enteric fermentation of feed by ruminants is the largest source of anthropogenic methane emissions (0.14 Gt of CO2 Eq. in 2012; or 25% of the total methane emissions; ref. 3). Globally, according to the most recent Intergovernmental Panel on Climate Change (IPCC) report, GHG emissions from agriculture represent around 10–12% (5.0–5.8 Gt CO2 Eq/yr) of the total anthropogenic GHG emissions (1). In this report, livestock contribution to the global anthropogenic GHG emissions was estimated at 6.3%, with GHG emissions from enteric fermentation accounting for 2.1 Gt CO2 Eq/yr and manure management accounting for 0.99 Gt CO2 Eq/yr (1). The relative contribution of emissions from enteric fermentation to the total agricultural GHG emissions will vary by region depending on the structure of agricultural production and type of livestock production systems. For example, GHG from enteric fermentation were estimated at 57% for New Zealand, a country with a large, pasture-based livestock sector (4). Extensive research in recent years has provided a number of viable enteric methane mitigation practices, such as alternative electron receptors, methane inhibitors, dietary lipids, and increased animal productive efficiency (5). Methane emission in the reticulo-rumen is an evolutionary adaptation that enables the rumen ecosystem to dispose of hydrogen, a fermentation product and an important energy substrate for the methanogenic archaea (6), which may otherwise accumulate and inhibit carbohydrate fermentation and fiber degradation (7, 8). Some compounds may be effective in decreasing methane emission, but they may also decrease feed intake, fiber degradability, and animal productivity (5), or the rumen archaea may adapt to them (9). Therefore, it is important to evaluate methane mitigation strategies in long-term experiments, which for livestock experimentation requires treatment periods considerably longer than the 21–28 d, common for crossover designs. In addition, due to a variety of constraints and confounding factors of batch or continuous culture in vitro systems (5, 10), mitigation compounds, including methane inhibitors, have to be tested in vivo using animals with similar productivity to those on commercial farms. An example of the limitations of in vitro systems is a series of experiments with garlic oil. In continuous rumen culture, garlic oil was very effective in inhibiting rumen methane emission (11), but it failed to produce an effect in sheep (12). The nutrient requirements of high-producing dairy cows are much greater than those of nonlactating or low-producing cows (13) and hence any reduction in feed intake caused by a methane mitigation compound or practice would likely result in decreased productivity, which may not be evident in low-producing cows.Methane inhibitors are chemical compounds with inhibitory effects on rumen archaea. Compounds such as bromochloromethane, 2-bromoethane sulfonate, chloroform, and cyclodextrin have been tested, some successfully, in various ruminant species (5). Inhibition of methanogenesis by these compounds in vivo can be up to 60% with the effect of bromochloromethane shown to persist in long-term experiments (5, 14). However, the viability of these compounds as mitigation agents has been questioned due to concerns for animal health, food safety, or environmental impact. Bromochloromethane, for example, is an ozone-depleting agent and is banned in many countries.Among the efficacious methane inhibitors identified is 3-nitrooxypropanol (3NOP; ref. 15). This compound was part of a developmental program designing specific small molecule inhibitors for methyl coenzyme-M (CoM) reductase, the enzyme that catalyzes the last step of methanogenesis, the reduction of methyl CoM and coenzyme-B (CoB) into methane and a CoM–CoB complex (16). A continuous in vitro culture study (11) was followed by in vivo experiments in sheep (17), beef (18), and dairy cattle (19, 20), which demonstrated that 3NOP is an effective methane inhibitor. However, these experiments were conducted using nonlactating animals (17), or were short-term (<35 d; refs. 19 and 20). The rumen microorganisms have the ability to adapt to foreign agents or changes in the feeding regimen and, therefore, short-term responses are not representative of the effect of a given mitigation compound or practice in real farm conditions. McIntosh et al. (21), for example, showed that the MIC50 of essential oils doubled or tripled for a number of important rumen bacteria (Butyrivibrio fibrisolvens, Prevotella bryantii, Ruminococcus albus, Ruminobacter amylophilus), if they were adapted to the treatment for a period of 10 d. Thus, it is critically important for the success of GHG mitigation efforts to substantiate the mitigation potential of a given compound in long-term animal experiments before considering it for adoption by the livestock industries.  相似文献   
42.
43.
44.
45.
46.
47.
48.
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号