首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2547篇
  免费   185篇
  国内免费   4篇
耳鼻咽喉   27篇
儿科学   107篇
妇产科学   61篇
基础医学   429篇
口腔科学   36篇
临床医学   215篇
内科学   601篇
皮肤病学   36篇
神经病学   200篇
特种医学   113篇
外科学   297篇
综合类   9篇
一般理论   1篇
预防医学   257篇
眼科学   24篇
药学   126篇
中国医学   5篇
肿瘤学   192篇
  2023年   19篇
  2022年   38篇
  2021年   69篇
  2020年   51篇
  2019年   72篇
  2018年   118篇
  2017年   46篇
  2016年   60篇
  2015年   79篇
  2014年   120篇
  2013年   152篇
  2012年   216篇
  2011年   208篇
  2010年   114篇
  2009年   107篇
  2008年   168篇
  2007年   175篇
  2006年   191篇
  2005年   172篇
  2004年   145篇
  2003年   132篇
  2002年   132篇
  2001年   17篇
  2000年   6篇
  1999年   15篇
  1998年   23篇
  1997年   10篇
  1996年   24篇
  1995年   9篇
  1994年   13篇
  1993年   8篇
  1992年   5篇
  1991年   4篇
  1990年   3篇
  1989年   2篇
  1987年   2篇
  1986年   3篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1975年   2篇
  1972年   2篇
排序方式: 共有2736条查询结果,搜索用时 15 毫秒
91.
Sinusoidal obstruction syndrome (SOS), also known as hepatic veno-occlusive disease (VOD), is a serious complication after hematopoietic stem cell transplantation (HSCT). SOS/VOD usually occurs within 3 weeks of HSCT, but the 2016 European Society for Blood and Marrow Transplantation diagnosis criteria have been revised to include late forms. Prophylactic use of defibrotide is recommended in the pediatric setting, but its value remains uncertain in the adult population. We report here a single-center series of 63 adult patients considered at high risk for SOS/VOD who received defibrotide prophylaxis in combination with ursodeoxycholic acid between May 2012 and August 2016. The median duration of defibrotide therapy was 23 days. Bleeding occurred in 14 patients (21.5%). Defibrotide prophylaxis was discontinued in 7 patients (10.8%): 4 cases (6.3%) due to bleeding and 3 cases (4.6%) because of the need for antithrombotic therapy. Overall, SOS/VOD occurred in 4 cases (6.3%) within 21 days after HSCT (days 13 and 14) in 2 cases and late-onset SOS/VOD (days 57 and 58) in the other 2 cases. SOS/VOD was moderate in 1 case, very severe in 3 cases, with 2 deaths related to SOS/VOD. Cumulative incidence of grades II to IV acute graft-versus-host disease and transplant-associated thrombotic microangiopathy were 22.2% and 3.2%, respectively. With a median follow-up of 31 months (range, 10.7 to 60.3), the rates of 2-year overall survival, progression-free survival, incidence of relapse, and nonrelapse mortality were 56.5%, 49%, 28.7%, and 22.3%, respectively. In our experience defibrotide prophylaxis is associated with a low incidence of SOS/VOD after allogeneic HSCT in a high-risk adult population with an acceptable safety profile.  相似文献   
92.
Beyond the production of autoantibodies, B-cells are thought to play a role in systemic sclerosis (SSc) by secreting proinflammatory/profibrotic cytokines. B-cells are a heterogeneous population with different subsets distinguished by their phenotypes and cytokine production. Data about B-cell subsets, cytokine production and intracellular pathways leading to this production are scarce in SSc. The aim of our study was to describe B-cell homeostasis, activation, proliferation, cytokine production in B-cells and serum and B-cell intracellular signaling pathways in SSc. We hypothezided that B-cell homeostasis and cytokine production were altered in SSc and could be explained by serum cytokine as well as by intracellular signaling pathway abnormalities.Forty SSc patients and 20 healthy controls (HC) were prospectively included. B-cell subsets were determined by flow cytometry using CD19, CD21, CD24, CD38, CD27, IgM and IgD. CD25, CD80, CD95, HLA-DR were used to assess B-cell activation. Intracellular production of IL-10 and IL-6 were assessed by flow cytometry after TLR9 and CD40 stimulation. IL-6, IL-10, Ki67, Bcl2 mRNA were quantified in B-cells. Cytokine production was also assessed in sera and supernatants of B-cell culture, using a multiplex approach. Signaling pathways were studied through phosphorylation of mTOR, ERK, STAT3, STAT5 using a flow cytometry approach.We found that SSc patients exhibited an altered peripheral blood B-cell subset distribution, with decreased memory B-cells but increased proportion of naive and CD21LoCD38Lo B-cell subsets. We observed an increased expression of activation markers (CD80, CD95, HLA-DR) on some B-cell subsets, mainly the memory B-cells. Secretion of IL-6, BAFF and CXCL13 were increased in SSc sera. There was no correlation between the peripheral blood B-cell subsets and the serum concentrations of these cytokines. After stimulation, we observed a lower proportion of IL-10 and IL-6 producing B–cells in SSc. Finally, we observed a significant decrease of mTOR phosphorylation in SSc patient B-cells.In conclusion, we observed an altered B-cell homeostasis in SSc patients compared to HC. Memory B-cells were both decreased and activated in patients. IL-10 producing B-cells were decreased in SSc. This decrease was associated with an alteration of mTOR phosphorylation in B-cells. Conversely, there was no correlation between serum cytokine profile and B-cell homeostasis alterations.  相似文献   
93.
We have previously demonstrated that mycobacterial lipoproteins engage TLR2 on human CD4+ T cells and upregulate TCR‐triggered IFN‐γ secretion and cell proliferation in vitro. Here we examined the role of CD4+ T‐cell‐expressed TLR2 in Mycobacterium tuberculosis (MTB) Ag‐specific T‐cell priming and in protection against MTB infection in vivo. Like their human counterparts, mouse CD4+ T cells express TLR2 and respond to TLR2 costimulation in vitro. This Th1‐like response was observed in the context of both polyclonal and Ag‐specific TCR stimulation. To evaluate the role of T‐cell TLR2 in priming of CD4+ T cells in vivo, naive MTB Ag85B‐specific TCR transgenic CD4+ T cells (P25 TCR‐Tg) were adoptively transferred into Tlr2?/? recipient C57BL/6 mice that were then immunized with Ag85B and with or without TLR2 ligand Pam3Cys‐SKKKK. TLR2 engagement during priming resulted in increased numbers of IFN‐γ‐secreting P25 TCR‐Tg T cells 1 week after immunization. P25 TCR‐Tg T cells stimulated in vitro via TCR and TLR2 conferred more protection than T cells stimulated via TCR alone when adoptively transferred before MTB infection. Our findings indicate that TLR2 engagement on CD4+ T cells increases MTB Ag‐specific responses and may contribute to protection against MTB infection.  相似文献   
94.
Mandibulofacial dysostosis, Guion‐Almeida type (MFDGA) is a recently delineated multiple congenital anomalies/mental retardation syndrome characterized by the association of mandibulofacial dysostosis (MFD) with external ear malformations, hearing loss, cleft palate, choanal atresia, microcephaly, intellectual disability, oesophageal atresia (OA), congenital heart defects (CHDs), and radial ray defects. MFDGA emerges as a clinically recognizable entity, long underdiagnosed due to highly variable presentations. The main differential diagnoses are CHARGE and Feingold syndromes, oculoauriculovertebral spectrum, and other MFDs. EFTUD2, located on 17q21.31, encodes a component of the major spliceosome and is disease causing in MFDGA, due to heterozygous loss‐of‐function (LoF) mutations. Here, we describe a series of 36 cases of MFDGA, including 24 previously unreported cases, and we review the literature in order to delineate the clinical spectrum ascribed to EFTUD2 LoF. MFD, external ear anomalies, and intellectual deficiency occur at a higher frequency than microcephaly. We characterize the evolution of the facial gestalt at different ages and describe novel renal and cerebral malformations. The most frequent extracranial malformation in this series is OA, followed by CHDs and skeletal abnormalities. MFDGA is probably more frequent than other syndromic MFDs such as Nager or Miller syndromes. Although the wide spectrum of malformations complicates diagnosis, characteristic facial features provide a useful handle.  相似文献   
95.
Airway epithelial basal cells are known to be critical for regenerating injured epithelium and maintaining tissue homeostasis. Recent evidence suggests that the α7 nicotinic acetylcholine receptor (nAChR), which is highly permeable to Ca2+, is involved in lung morphogenesis. Here, we have investigated the potential role of the α7 nAChR in the regulation of airway epithelial basal cell proliferation and the differentiation of the human airway epithelium. In vivo during fetal development and in vitro during the regeneration of the human airway epithelium, α7 nAChR expression coincides with epithelium differentiation. Inactivating α7 nAChR function in vitro increases cell proliferation during the initial steps of the epithelium regeneration, leading to epithelial alterations such as basal cell hyperplasia and squamous metaplasia, remodeling observed in many bronchopulmonary diseases. The regeneration of the airway epithelium after injury in α7−/− mice is delayed and characterized by a transient hyperplasia of basal cells. Moreover, 1-year-old α7−/− mice more frequently present basal cells hyperplasia. Modulating nAChR function or expression shows that only α7 nAChR, as opposed to heteropentameric αxβy nAChRs, controls the proliferation of human airway epithelial basal cells. These findings suggest that α7 nAChR is a key regulator of the plasticity of the human airway epithelium by controlling basal cell proliferation and differentiation pathway and is involved in airway remodeling during bronchopulmonary diseases.The respiratory epithelium, which is constantly exposed to airborne pollutants, is frequently injured, which results in altered epithelial functions. To restore these functions, the respiratory epithelium must undergo rapid repair via epithelial cell spreading and migration and regenerate its structure via basal cell proliferation and differentiation.1 These processes are tightly controlled to restore the pseudostratified architecture of the normal mucociliary epithelium. However, in most respiratory diseases, alterations of the regeneration processes induce epithelial remodeling such as hyperplasia, metaplasia, and fibrosis. Understanding the sequence of processes involved in cell proliferation and differentiation is therefore of crucial importance. Both in vivo and in vitro, human airway basal cells are able to proliferate and reconstitute a fully differentiated and functional epithelium.2 These cells are such considered as progenitors of the human airway epithelium and important actors of the airway epithelium regeneration.The nonneuronal cholinergic system is thought to be involved in the regulation of cell functions such as cell-cell interaction, apoptosis, and proliferation.3 It is now established that human bronchial epithelial cells contain all of the machinery for the production, storage, secretion, and degradation of acetylcholine, which acts as an autocrine or paracrine hormone.4,5 Acetylcholine exerts its effects through muscarinic and nicotinic acetylcholine receptors. Nicotinic acetylcholine receptors (nAChRs) are composed of five subunits, arranged as α/β heteromeric or α homomeric nAChRs, and assembled around a central ion channel, mediating the influx of Ca2+.6 The airway epithelium expresses α3, α4, α5, α7, α9, β2, and β4 subunits for nAChRs.7,8,9α7 nAChR is characterized by an elevated Ca2+ permeability10 and has been involved in several important biological processes such as cell proliferation, apoptosis, and angiogenesis in cancer.11,12 Prenatal nicotine exposure significantly increases pulmonary α7 nAChR expression and alters fetal lung development13 and subsequently pulmonary function in newborn.14 In particular, alteration of lung branching morphogenesis induced by nicotine is mediated by α7 nAChR.15 Altogether, these observations led us to investigate whether the α7 nAChR could be involved in the differentiation of the respiratory epithelium. In the human airway epithelium, we observed α7 nAChR expression in basal cells, which play a critical role in the epithelial regeneration. Both in vivo and in vitro, the α7 nAChR expression is associated with the airway epithelium differentiation. Moreover, in vitro inactivating α7 nAChR or in vivo disrupting genetic α7 nAChR expression induces airway epithelium remodeling by modulating basal cell proliferation. This study thus provides several lines of evidence that α7 nAChR is significant for airway epithelial differentiation and suggests that α7 nAChR is a key regulator of the plasticity of the airway epithelium.  相似文献   
96.
The high prevalence of type 2 diabetes and its uneven distribution among human populations is both a major public health concern and a puzzle in evolutionary biology. Why is this deleterious disease so common, while the associated genetic variants should be removed by natural selection? The ‘thrifty genotype'' hypothesis proposed that the causal genetic variants were advantageous and selected for during the majority of human evolution. It remains, however, unclear whether genetic data support this scenario. In this study, we characterized patterns of selection at 10 variants associated with type 2 diabetes, contrasting one herder and one farmer population from Central Asia. We aimed at identifying which alleles (risk or protective) are under selection, dating the timing of selective events, and investigating the effect of lifestyle on selective patterns. We did not find any evidence of selection on risk variants, as predicted by the thrifty genotype hypothesis. Instead, we identified clear signatures of selection on protective variants, in both populations, dating from the beginning of the Neolithic, which suggests that this major transition was accompanied by a selective advantage for non-thrifty variants. Combining our results with worldwide data further suggests that East Asia was particularly prone to such recent selection of protective haplotypes. As much effort has been devoted so far to searching for thrifty variants, we argue that more attention should be paid to the evolution of non-thrifty variants.  相似文献   
97.
Hypomorphic mutations in the gene encoding Bruton tyrosine kinase (BTK) may result in milder phenotypes and delayed diagnosis of B-cell related immunodeficiencies due to residual BTK function. Newborn screening for kappa-deleting-recombination-excision circles (KRECs) reliably identifies classical X-linked agammaglobulinaemia (XLA) patients with profound B-cell lymphopenia at birth but has not been evaluated in patients with residual BTK function. We aimed to evaluate clinical findings, BTK function and KREC copy numbers in three patients with BTK mutations presenting with impaired polysaccharide responsiveness without agammaglobulinaemia. One patient had an invasive pneumococcal infection at the age of 4 years. All three patients (two brothers) had visible tonsils, normal to slightly decreased immunoglobulin G levels, undetectable pneumococcal antibodies despite pneumococcal conjugate vaccinations, no antibody response after a diagnostic polysaccharide vaccination as well as profound B-cell lymphopenia with residual B-cell differentiation. BTK mutations were identified by Sanger sequencing. BTK staining and phosphorylation assays were performed on peripheral B cells. KREC copy numbers were determined from dried blood spots obtained within the first week of life as well as once at the age of 8, 6 and 3 years, respectively. BTK staining showed residual protein expression. Also, residual BTK activity could be demonstrated. KREC copy numbers from dried blood spots were above the threshold set for detection of patients with profound B-cell lymphopenia. Male patients with impaired polysaccharide responsiveness should be evaluated for B-cell lymphopenia followed by BTK analyses irrespective of immunoglobulin levels or tonsil size.  相似文献   
98.
We have previously observed in vitro that some stromal proteinases (MMP-2, MT1-MMP) were expressed or activated by invasive carcinoma cell lines exhibiting mesenchymal features, presumably acquired through an epithelial to mesenchymal transition (EMT). To examine the potential contribution of c-ets-1 to this phenotype, we have compared here the expression of c-ets-1 with invasiveness in vitro and expression of vimentin, E-cadherin, uPA, MMP-1 and MMP-3 in a panel of human breast cancer cell lines. Our results clearly demonstrate an association between c-ets-1 expression and the invasive, EMT-derived phenotype, which is typified by the expression of vimentin and the lack of E-cadherin. While absent from the two non-invasive, vimentin-negative cell lines, c-ets-1 was abundantly expressed in all the four vimentin-positive lines. However, we could not find a clear quantitative or qualitative relationship between the expression of c-ets-1 and the three proteinases known to be regulated by c-ets-1, except that when they were expressed, it was only in the invasive c-ets-1-positive lines. UPA mRNAs were found in three of the four vimentin-positive lines, MMP-1 in two of the four, and MMP-3 could not be detected in any of the cell lines. Intriguingly, MDA-MB-435 cells, which exhibit the highest metastatic potential of these cell lines in nude mice, expressed vimentin and c-ets-1, but lacked expression of these three proteinases, at least under the culture conditions employed. Taken together, our results show that c-ets-1 expression is associated with an invasive, EMT-derived phenotype in breast cancer cells, although it is apparently not sufficient to ensure the expression of uPA, MMP-1 or MMP-3, in the vimentin-positive cells. Such proteases regulation is undoubtedly qualified by the cellular context. This study therefore advances our understanding of the molecular regulation of invasiveness in EMT-associated carcinoma progression, and suggests that c-ets-1 may contribute to the invasive phenotype in carcinoma cells.  相似文献   
99.
Natural killer cells and malaria   总被引:3,自引:1,他引:3  
Summary:  Malaria, caused by the infection with parasites of the germs Plasmodium , is one of the three most important infectious diseases worldwide, along with tuberculosis and infection with human immunodeficiency virus. Natural killer (NK) cells are lymphocytes classically involved in the early defense against viral infections and intracytoplasmic bacterial infections and are also implicated during the course of tumor development and allogeneic transplantation. These cells display important cytotoxic activity and produce high levels of proinflammatory cytokines. In both mouse and human models of malaria, NK cells appear to be a major source of interferon-γ during the early phase of infection. In humans, indirect signaling through monocytes/macrophages required to optimally stimulate NK cell activity. However, the in vivo functions of NK cells during malaria are still enigmatic, and many issues remain to be dissected, such as the molecular basis of the direct recognition of iRBCs by NK cells.  相似文献   
100.
Embryonic stem (ES) cells can give rise, in vivo, to the ectodermal, endodermal, and mesodermal germ layers and, in vitro, can differentiate into multiple cell lineages, offering broad perspectives in regenerative medicine. Understanding the molecular mechanisms governing ES cell commitment is an essential challenge in this field. The mitogen-activated protein kinase (MAPK) pathways extracellular signal-regulated kinase (ERK), c-Jun amino-terminal kinase (JNK), and p38MAPK are able to regulate ES commitment from early steps of the process to mature differentiated cells. Whereas the ERK pathway inhibits the self-renewal of ES cells, upon commitment this pathway is involved in the development of extraembryonic tissues, in early mesoderm differentiation, and in the formation of mature adipocytes; p38MAPK displays a large spectrum of action from neurons to adipocytes, and JNK is involved in both ectoderm and primitive endoderm differentiations. Furthermore, for a given pathway, several of these effects are isoform-dependent, revealing the complexity of the cellular response to activation of MAPK pathways. Regarding tissue regeneration, the potential outcome of systematic analysis of the function of different MAPKs in different ES cell differentiation programs is discussed. Disclosure of potential conflicts of interest is found at the end of this article.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号