首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   418篇
  免费   33篇
儿科学   8篇
妇产科学   1篇
基础医学   84篇
口腔科学   1篇
临床医学   29篇
内科学   73篇
皮肤病学   13篇
神经病学   27篇
特种医学   4篇
外科学   30篇
综合类   30篇
预防医学   22篇
眼科学   10篇
药学   80篇
中国医学   7篇
肿瘤学   32篇
  2023年   5篇
  2022年   10篇
  2021年   17篇
  2020年   7篇
  2019年   9篇
  2018年   17篇
  2017年   10篇
  2016年   10篇
  2015年   13篇
  2014年   13篇
  2013年   19篇
  2012年   31篇
  2011年   31篇
  2010年   24篇
  2009年   12篇
  2008年   14篇
  2007年   24篇
  2006年   19篇
  2005年   15篇
  2004年   9篇
  2003年   16篇
  2002年   8篇
  2001年   13篇
  2000年   14篇
  1999年   8篇
  1998年   4篇
  1997年   4篇
  1996年   3篇
  1994年   3篇
  1993年   4篇
  1992年   4篇
  1991年   6篇
  1990年   5篇
  1989年   6篇
  1988年   4篇
  1987年   3篇
  1986年   4篇
  1985年   6篇
  1983年   1篇
  1982年   3篇
  1981年   4篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   3篇
  1975年   3篇
  1972年   2篇
  1971年   3篇
  1969年   2篇
  1967年   2篇
排序方式: 共有451条查询结果,搜索用时 15 毫秒
41.
The present study was aimed to test the hypothesis that inorganic phosphate may reduce arsenic toxicity by decreasing its intestinal transference. Co-administration of inorganic phosphate (6.56 M) and arsenic (6.07 mM) in the intestinal loops of rats, in situ, caused significant reduction of arsenic transference. Short-term arsenic exposure (3mg/kg body weight/day for 30 days) caused liver damage evidenced by activities of liver enzymes and necroinflammatory changes. These effects of arsenic were coupled with enhanced mitochondrial swelling, inhibition of cytochrome c oxidase, Ca(2+)-ATPase, a decrease in mitochondrial calcium content, changes in indices of hepatic mitochondrial oxidative stress and iNOS expression. Arsenic also increased hepatic caspase 3 activity and DNA fragmentation. All these apoptosis-related molecular changes caused by arsenic could be alleviated by supplementation with inorganic phosphate, which likely suggests a protective role of phosphate against arsenic-induced hepatotoxic changes.  相似文献   
42.
Recent experiments on monoaminergic neurons have shown that neurotransmission can originate from somatic release. However, little is known about the quantity of monoamine available to be released through this extrasynaptic pathway or about the intracellular dynamics that mediate such release. Using three-photon microscopy, we directly imaged serotonin autofluorescence and investigated the total serotonin content, release competence, and release kinetics of somatic serotonergic vesicles in the dorsal raphe neurons of the rat. We found that the somata of primary cultured neurons contain a large number of serotonin-filled vesicles arranged in a perinuclear fashion. A similar distribution is also observed in fresh tissue slice preparations obtained from the rat dorsal raphe. We estimate that the soma of a cultured neuron on an average contains about 9 fmoles of serotonin in about 450 vesicles (or vesicle clusters) of < or =370 nm average diameter. A substantial fraction (>30%) of this serotonin is released with a time scale of several minutes by K(+)-induced depolarization or by para-chloroamphetamine treatment. The amount of releasable serotonin stored in the somatic vesicles is comparable to the total serotonin content of all the synaptic vesicles in a raphe neuron, indicating that somatic release can potentially play a major role in serotonergic neurotransmission in the mammalian brain.  相似文献   
43.
An efficient method has been developed to synthesize zapotin (5,6,2',6'-tetramethoxyflavone), a component of the edible fruit Casimiroa edulis, on a multigram scale. The synthesis utilizes a regioselective C-acylation of a dilithium dianion derived from a substituted o-hydroxyactophenone to afford a beta-diketone intermediate that can be cyclized to zapotin in good overall yield, thus avoiding the inefficient Baker-Venkataraman rearrangement pathway. Zapotin was found to induce both cell differentiation and apoptosis with cultured human promyelocytic leukemia cells (HL-60 cells). In addition, the compound inhibits 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced ornithine decarboxylase (ODC) activity with human bladder carcinoma cells (T24 cells), and TPA-induced nuclear factor-kappa B (NF-kappaB) activity with human hepatocellular liver carcinoma cells (HepG2 cells). These data suggest that zapotin merits further investigation as a potential cancer chemopreventive agent.  相似文献   
44.
Sulfotransferases (SULTs) are enzymes that catalyze the sulfation of hydroxyl-containing compounds. Sulfation regulates hormone activities and detoxifies xenobiotics. Human estrogen sulfotransferase (hSULT1E1) catalyzes the sulfation of estrogens and regulates estrogen bioactivities. Oxidative regulation provides a biological mechanism for regulating enzyme activities in vivo. The oxidative regulation of human SULTs has not been reported. In this study, we used amino acid modification, manipulation of intracellular redox state, and site-directed mutagenesis to study the redox regulation of human SULTs and specifically the mechanism of hSULT1E1 inhibitory regulation by oxidized glutathione (GSSG). Of the four major human SULTs, hSULT1A1, hSULT1A3, and hSULT2A1 do not undergo redox regulation; hSULT1E1, on the other hand, can be redox regulated. GSSG inactivated hSULT1E1 activity in an efficient, time- and concentration-dependant manner. The co-enzyme adenosine 3'-phosphate 5'-phosphosulfate protected hSULT1E1 from GSSG-associated inactivation. A reduced glutathione (GSH) inducer (N-acetyl cysteine) significantly increased while a GSH depletor (buthionine sulfoxamine) significantly decreased hSULT1E1 activity, but both failed to affect the amount of hSULT1E1 protein in human hepatocyte carcinoma Hep G2 cells. Crystal structure suggested that no Cys residues exist near the active sites of hSULT1A1, hSULT1A3, and hSULT2A1, but Cys residues do exist within the active site of hSULT1E1. Site-directed mutagenesis demonstrated that Cys83 is critical for the redox regulation of hSULT1E1. This first report on the redox regulation of human SULTs suggests that the redox regulation of hSULT1E1 may interrupt the regulation and function of estrogens under various physiological and pathological conditions.  相似文献   
45.
The aim of the investigation was to study the influence of high ambient temperature on adrenomedullary activity and blood glucose levels in adult female soft-shelled turtles (Lissemys punctata punctata). Experiments were carried out at 25 degrees, 35 degrees, and 38 degrees, and one group was exposed to 38 degrees for 15 days and then maintained at 25 degrees for another 15 days. Exposure to a low ambient temperature of 25 degrees had no clear effect on adrenomedullary function with respect to histology (nuclear diameter), epinephrine and norepinephrine concentrations, and blood glucose level of turtles, but higher temperatures of 35 degrees and 38 degrees stimulated adrenomedullary activity as well as blood glucose level in turtles compared with controls (30 degrees ). The extent of these changes was greater at 38 degrees than that at 35 degrees, and withdrawal from high ambient temperature reversed the effect in turtles.  相似文献   
46.
47.
48.
A pyrrole-based rhodamine conjugate (CS-1) has been developed and characterized for the selective detection and quantification of 2′-deoxy-5-(hydroxymethyl)cytidine (5hmC) in human cancer cells with a simple chemosensing method.

A new chemosensor, CS-1, has been developed and characterized for the selective detection and quantification of 2′-deoxy-5-(hydroxymethyl)cytidine (5hmC) in human cancer cells.

2′-Deoxy-5-(hydroxymethyl)cytidine (5hmC) is found in both neuronal cells and embryonic stem cells. It is a modified pyrimidine and used to quantify DNA hydroxymethylation levels in biological samples1–3 as it is capable of producing interstrand cross-links in double-stranded DNA. It is produced through an enzymatic pathway carried out by the Ten-Eleven Translocation (TET1, TET2, TET3) enzymes, iron and 2-oxoglutarate dependent dioxygenase.4–7 In the DNA demethylation process, methylcytosine is converted to cytosine and generates 5hmC as an intermediate in the first step of this process which is then further oxidized to 5-formylcytosine (fC) and 5-carboxycytosine (caC) of very low levels compared to the cytosine level.8 Though the biological function of 5hmC in the mammalian genome is still not revealed, the presence of a hydroxymethyl group can regulate gene expression (switch ON & OFF). Reports say that in artificial DNA 5hmC is converted to unmodified cytosine when introduced into mammalian cells.9,10Levels of 5hmC substantially vary in different tissues and cells. It is found to be highest in the brain, particularly in nervous system and in moderate percentage in liver, colon, rectum and kidney tissues, whereas it is relatively low in lung and very low in breast and placenta.11,12 The percentage of 5hmC content is much less in cancer and tumor tissues compared to the healthy ones. The reason behind this loss is the absence of TET1, TET2, TET3, IDH1, or IDH2 mutations in most of the human cancer cells which means decrease of methylcytosine oxidation.13–15 This loss of 5hmC in cancer cells is being used as a diagnostic tool for the detection of early-stage of malignant disease. Few analytical methods16–19 such as glucosyltransferase assays, tungsten-based oxidation systems, and TET-assisted bisulfite sequencing (TAB-Seq) or oxidative bisulfite sequencing (oxBS-Seq) protocols are now developed to differentiate 5hmC from other nucleotide which are naturally occurred. There are also few methods such as liquid chromatography/tandem mass spectroscopy (LC/MS-MS), which determine the level of 5hmC in mammalian cancer cell.20–22 However, these procedures are highly toxic and expensive due to requirement of catalyzation through enzymes or heavy metal ion and these techniques require expertise, facilities, much time and costs even beyond standard DNA sequencing. As a result, these detection techniques are currently inappropriate for the high-throughput screening of genome-wide 5hmC levels (performance comparison is shown in Table S1, ESI).Among all reputed methods fluorescence detection method using chemosensors is significantly important due to its indispensable role in medicinal and biological applications.23–27 Chemosensors have been effectively explored to monitor biochemical processes and assays through in situ analysis in living systems and abiotic samples with much less time and cost.In this contribution we prepared and characterize (Scheme S1 and Fig. S1–S3, ESI) a pyrrole–rhodamine based chemosensor (CS-1) which shows efficient and selective fluorescence signal for 5hmC in aqueous medium (Scheme 1). A transparent single crystal of CS-1 (Fig. 1) was obtained by slow evaporation of the solvent from a solution of CS-1 in CH3CN. It crystallizes as monoclinic with space group P21/n (Fig. S4 and Table S2, ESI).Open in a separate windowScheme 15hmC-induced FRET OFF–ON mechanism of the chemosensor CS-1.Open in a separate windowFig. 1ORTEP diagram of CS-1 (ellipsoids are drawn at 40% probability level).Spectrophotometric and spectrofluorimetric titrations were carried out to understand the CS-1–5hmC interaction with 1 : 1 binding stoichiometry (Fig. S5, ESI) upon adding varying concentrations of 5hmC to a fixed concentration of CS-1 (1 μM) in aqueous medium at neutral pH. Upon the addition of increasing concentrations of the 5hmC, a clear absorption band (Ka = 4.47 × 105 M−1, Fig. S6, ESI) appeared to be centered at 556 nm with increasing intensity (Fig. 2a). On the other hand, for the fluorescence emission spectra of CS-1 (Fig. 2b), upon irradiation at 325 nm, an emission maxima at 390 nm was observed, which was attributed to the fluorescence emission from the donor unit i.e. the pyrrole moiety of CS-1. When 5hmC were added, due to rhodamine moiety CS-1 showed a 95-fold increase in fluorescence at 565 nm (Ka = 4.61 × 105 M−1, Fig. S7, ESI) with the detection limit of 8 nM (Fig. S8, ESI). The binding of 5hmC induces opening of the spirolactam ring in CS-1, inducing a shift of the emission spectrum. Subsequently, increased overlap between the emission of the energy-donor (pyrrole) and the absorption of the energy-acceptor (rhodamine) greatly enhances the intramolecular FRET process,28,29 producing an emission from the energy acceptor unit in CS-1.Open in a separate windowFig. 2(a) UV-vis absorption spectra of CS-1 (1 μM) upon gradual addition of 5hmC up to 1.2 equiv. in H2O–CH3CN (15 : 1, v/v) at neutral pH. (b) Fluorescence emission spectra of CS-1 (1 μM) upon addition of 1.2 equiv. of 5hmC in H2O–CH3CN (15 : 1, v/v) at neutral pH (λex = 325 nm).In order to establish the sensing selectivity of the chemosensor CS-1, parallel experimentations were carried out with other pyrimidine/purine derivatives such as 5-methylcytosine, cytosine, cytidine, thymine, uracil, 5-hydroxymethyluracil, adenine and guanine. Comparing with other pyrimidine/purine derivatives the abrupt fluorescence enhancement was found upon addition of 5hmC to CS-1 while others do not make any fluorescence changes under UV lamp (Fig. 3, lower panel). Furthermore, the prominent color change from colorless to deep pink allows 5hmC to be detected by naked eye (Fig. 3, upper panel). The above observation shows consistency with the fluorescence titration experiments where no such binding of CS-1 with other pyrimidine/purine derivatives was found (Fig. S9, ESI).Open in a separate windowFig. 3Visible color (top) and fluorescence changes (bottom) of CS-1 (1 μM) in aqueous medium upon addition of 1.2 equiv. of various pyrimidine/purine derivatives (λex = 325 nm) in H2O–CH3CN (15 : 1, v/v) at neutral pH.pH titration reveals that CS-1 becomes fluorescent below pH 5 due to the spirolactam ring opening of rhodamine. However, it is non-fluorescent at pH range of 5–13. Upon addition of 5hmC to CS-1 shows deep red fluorescence in the pH range of 5–8 (Fig. S10, ESI). Considering the biological application and the practical applicability of the chemosensor pH 7.4 has been preferred to accomplish all experiments successfully.In 1H NMR titration (Fig. S11, ESI), the most interesting feature is the continuous downfield shift of aromatic protons on the pyrrole moiety of CS-1 upon gradual addition of 5hmC. This may be explained as the decrease in electron density of the pyrrole moiety upon binding with 5hmC through hydrogen bonding. Xanthene protons to be shifted downfield upon spirolactam ring opening indicates the probe to coordinate with 5hmC and electrons are accumulated around 5hmC. In 13C NMR titration the spiro cycle carbon peak at 65 ppm was shifted to 138 ppm along with a little downfield shift of the aromatic region of CS-1 (Fig. S12, ESI). This coordination led to the spiro cycle opening and changes to the absorption and emission spectra, further evident by mass spectrometry (Fig. S13, ESI), which corroborates the stronger interaction of CS-1 with 5hmC.The experimental findings were validated by density functional theory (DFT) calculations using the 6-31G+(d,p) method basis set implemented at Gaussian 09 program. Energy optimization calculations presented the conformational changes at the spirolactam position of CS-1 while 5hmC takes part to accommodate a probe molecule. After CS-1–5hmC complexation the energy is minimized by 19.45 kcal from the chemosensor CS-1, indicating a stable complex structure (Fig. 4 and Table S3, ESI). This theoretical study strongly correlates the experimental findings.Open in a separate windowFig. 4Energy diagram showing the energy differences between CS-1 and CS-1–5hmC complex.The desirable features of CS-1 such as high sensitivity and high selectivity at physiological pH encouraged us to further evaluate the potential of the chemosensor for imaging 5hmC in live cells (Fig. 5). A549 cells (Human cancer cell A549, ATCC no. CCL-185) treated with CS-1 (1 μM) exhibited weak fluorescence, whereas a deep red fluorescence signal was observed in the cells stained with CS-1 (1 μM) and 5hmC (10 μM), which is in good agreement with the FRET OFF–ON profile of the chemosensor CS-1 in presence of 5hmC, thus corroborating the in-solution observation (Fig. S14, ESI). Cytotoxicity assay measurement shows that the chemosensor CS-1 does not have any toxicity on the tested cells and CS-1–5hmC complex does not exert any significant adverse effect on cell viability at tested concentrations (Fig. S15, ESI). As far as we are aware, this is the first report where we are executing the possible use of the pyrrole–rhodamine based chemosensor for selective recognition of 5hmC in living cells. These findings open an avenue for future biomedical applications of the chemosensor to recognize 5hmC.Open in a separate windowFig. 5Confocal microscopic images of A549 cells treated with CS-1 and 5hmC. (a) Cells treated with only CS-1 at 1 μM concentration. (b) Bright field image of (a). (c) Cells treated with CS-1 and 5hmC at concentration 10 μM. (d) Bright field image of (c). All images were acquired with a 60× objective lens with the applied wavelengths: For (a) and (b), Eex = 341 nm, Eem = 414 nm, filter used: DIDS; for (c) and (d) Eex = 550 nm, Eem = 571 nm, filter used: Rhod-2.The concentration of 5hmC was also quantified from A549 human cancer cells. Lysate of 107 A549 cells was added to 1 μM of CS-1 and the fluorescence signal was recorded. Presence of 5hmC in these cancer cells was detected with the help of CS-1–5hmC standard fluorescence curve (Fig. 6) using the selective detection ability of the chemosensor CS-1.Open in a separate windowFig. 6(a) Calibration curve obtained for the estimation of 5hmC. (b) Estimation of the concentration of 5hmC (red point) from the calibration curve.From the standard curve it was found that the concentration of 5hmC in the tested sample was 0.034 μM present in 16.7 mm3 A549 cell volume (). Assay of 5hmC was further validated from multiple samples of A549 human cancer cells using CS-1. Increasing fold of fluorescence signals was also statistically validated after calculating the Z′ value (Table S5, ESI). All tested samples shows the Z′ score value more than 0.9, indicating an optimized and validated assay of 5hmC.Quantification of 5hmC in human cancer cell A549
SampleCS-1 used (μM)Initial 5hmC usedAddition of exogenous 5hmC (μM)Amount of 5hmC derived from fluorescence signal (μM)Fluorescence signal recovery (%)
115hmC present in 16.7 mm3 A549 cell volume00.034
2111.02899.4
3134.01999.6
4155.01299.5
Open in a separate window  相似文献   
49.
50.
Self-treatment of condylomata acuminata with podophyllin resin   总被引:3,自引:0,他引:3  
H Maiti  K R Haye 《The Practitioner》1985,229(1399):37-39
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号