The availability of recombinant human growth hormone (GH) has broadened its range of clinical applications. Approved indications for GH therapy include treatment of growth hormone deficiency (in children and in adults), Turner syndrome, Prader-Willi syndrome, chronic renal insufficiency and more recently, idiopathic short stature in children, AIDS-related wasting and fat accumulation associated with lipodystrophy in adults. Therapy with GH usually begins at a low dose and is gradually titrated to obtain optimal efficacy while minimizing side effects. It is usually administered on a daily basis by subcutaneous injection, since this was considered to impact upon patient compliance, extended-release GH preparations were developed and new delivery platforms - e.g., auto-injectors and needle-free devices - were introduced in order to improve not only compliance and convenience but also dosing accuracy. In addition, alternative less invasive modes of administration such as the nasal, pulmonary and transdermal routes have also been investigated. Here, we provide an overview of the different technologies and routes of GH administration and discuss the principles, limitations and pharmacological profiles for each approach. 相似文献
Human basic fibroblast growth factor (hbFGF; 17.4 kDa) has shown promise in the treatment of several dermatological conditions; symptomatic improvement was also observed in patients with peripheral arterial disease after arterial infusion. The objective of this study was to demonstrate the feasibility of using transdermal iontophoresis to deliver biologically active hbFGF noninvasively into and across the skin. The protein was cloned, expressed and purified in-house. Porcine skin was used to investigate transdermal iontophoretic transport of hbFGF as a function of current density (0.15, 0.3, and 0.5 mA/cm(2)); results were subsequently confirmed using human skin. Cumulative hbFGF permeation and skin deposition were quantified by ELISA. The absence of proteolytic degradation during skin transit was confirmed by SDS-PAGE. Biological activity postdelivery was determined using cell proliferation assays in human foreskin fibroblast (HFF) and NIH 3T3 cell lines. Confocal laser scanning microscopy (CLSM) was used to visualize the distribution of rhodamine-tagged hbFGF in the skin. Cumulative iontophoretic permeation at 0.3 mA/cm(2) was statistically superior to that at 0.15 mA/cm(2); however, there was no further improvement at 0.5 mA/cm(2). Significant skin deposition of hbFGF was observed, and this dominated transport; for example, after iontophoresis for 8 h at 0.5 mA/cm(2), skin deposition (77.74 ± 37.36 μg/cm(2)) was 4.4-fold higher than cumulative permeation (17.64 ± 5.18 μg/cm(2)). The superior skin deposition may be advantageous for dermatological applications. The HFF and NIH 3T3 cell proliferation assays confirmed that biological activity of hbFGF was retained postdelivery. Coiontophoresis of acetaminophen showed that the dominant transport mechanism switched from electroosmosis to electromigration upon increasing current density from 0.15 to 0.3 mA/cm(2). Experiments using human skin confirmed that iontophoretic permeation of hbFGF across porcine and human membranes was statistically equivalent. CLSM images of rhodamine-tagged hbFGF postiontophoresis indicated that the protein was evenly distributed throughout the epidermis and dermis. In conclusion, the results confirmed that transdermal iontophoresis was indeed able to deliver structurally intact, functional hbFGF noninvasively into and across the skin. The amounts of protein delivered were similar to those in reports from preclinical and clinical studies. 相似文献
Puromycin aminonucleoside (PAN)-induced proteinuria in rats may be mediated by reactive oxygen metabolites (ROM), which are injurious to several cell components including membrane lipids. Increased malondialdehyde (MDA) production is indicative of lipid peroxidation. We examined if MDA content of glomeruli and its urinary excretion were increased in rats administered PAN. Of three groups of 8 Sprague-Dawley rats each, group 1 served a control, group 2 animals received a single intravenous injection of PAN (5 mg/100 g body weight) and group 3 animals PAN with intraperitoneal injections of dimethylthiourea (DMTU), a free radical scavenger of oxidants such as hydroxyl radicals, for 4 days. The rats were sacrificed on day 8 after PAN injection. Increasing proteinuria, starting on day 4, developed in animals in group 2 but not in the others. The glomerular MDA (nmol/mg protein) in group 2 animals was 2.93±1.91, significantly higher than 0.87±0.63 and 1.26±0.76 in groups 1 and 3, respectively. urinary levels of MDA markedly increased in group 2 rats on day 3 and remained high thereafter, but no such increase occurred in the control animals and those administered PAN with DMTU; the latter was thus protective against PAN toxicity. Our observations support the view that ROM are involved in PAN-induced glomerular injury and that increased urinary MDA excretion can be a marker of ROM-mediated lipid peroxidation. 相似文献
Alzheimer's disease (AD) is a progressive degenerative disorder that currently remains extremely disabling. Recent work has shown that deep brain stimulation (DBS) has promising effects in AD patients. In parallel to the clinical trials, we investigated the impact of chronic DBS in 3xTg mice, a well-established animal model of AD.
Methods
AD mice were assigned to control (Cont), non-stimulation (NS) and stimulation (DBS) groups, along with age matched wild type controls (WT-Cont). Bilateral electrodes were implanted in the entorhinal cortex to deliver chronic high frequency stimulation for 25 days. Animals were tested in memory behavioral tasks, with post-mortem measurements of pathological markers.
Results
We found that chronic DBS in AD mice normalized their impaired performance in the Morris water maze task to that of the WT group in the probe test. In the novel object and novel place preference tasks, AD-DBS mice spent more time at the novel object and novice location compared to AD-NS mice. These cognitive improvements in AD-DBS mice were associated with DBS induced increased neurogenesis in the dentate gyrus, a significant reduction in β?amyloid plaques, a reduction in CA-1 cellular β?amyloid-42 levels, decreased cortical total-tau and phosphorylated-tau, along with decreased hippocampal total-tau.
Conclusion
Overall, we show that chronic DBS of the entorhinal cortex in AD mice improves both memory and AD specific pathological markers. These results support further testing of DBS as a potential treatment in AD patients. 相似文献
Aimof the study: Astrogliosis is a key contributor for many neurological disorders involving apoptosis, neuroinflammation and subsequent neuronal death. Silibinin, a polyphenol isolated from milk thistle (Silybum marianum), has been shown to suppress the astrocyte activation in various neurodegenerative disorders and also exhibit a neuroprotective role in neuroinflammation-driven oxidative damage. The present study was designed with an aim to investigate the neuroprotective effects of Silibinin against LPS induced oxido-inflammatory cascade and astrocyte activation.
Materials and methods: We have used in-silico molecular modelling techniques to study the interaction and binding affinity of silibinin with chemokine receptors associated with neuroinflammation. We have also tested silibinin against LPS induced oxido-inflammatory cascade and astrocyte activation in C6 glia cell lines.
Results: In the present study, we found that treatment with silibinin significantly attenuates LPS-oxidative-nitrosative stress in C6 astrocytoma cells. We also observed the significant inhibition of induced astrocyte activity after treatment with silibinin. Moreover, molecular modelling studies have proposed a binding pose of silibinin with binding sites of p38 MAPK, CX3CR1 and P2X4 which is an important downstream cascade involved in glia cell activation and neuroinflammation.
Conclusions: Overall, the findings from the current study suggests that silibinin exhibits neuroprotective activity by attenuating oxidative damage and astrocytes activation. 相似文献