首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7859篇
  免费   592篇
  国内免费   24篇
耳鼻咽喉   73篇
儿科学   241篇
妇产科学   181篇
基础医学   1183篇
口腔科学   133篇
临床医学   792篇
内科学   1576篇
皮肤病学   196篇
神经病学   805篇
特种医学   195篇
外科学   739篇
综合类   62篇
一般理论   11篇
预防医学   839篇
眼科学   186篇
药学   538篇
中国医学   19篇
肿瘤学   706篇
  2024年   11篇
  2023年   111篇
  2022年   180篇
  2021年   316篇
  2020年   232篇
  2019年   301篇
  2018年   316篇
  2017年   271篇
  2016年   285篇
  2015年   282篇
  2014年   366篇
  2013年   471篇
  2012年   707篇
  2011年   696篇
  2010年   340篇
  2009年   320篇
  2008年   508篇
  2007年   486篇
  2006年   450篇
  2005年   409篇
  2004年   341篇
  2003年   296篇
  2002年   271篇
  2001年   50篇
  2000年   39篇
  1999年   41篇
  1998年   44篇
  1997年   24篇
  1996年   24篇
  1995年   16篇
  1994年   19篇
  1993年   21篇
  1992年   15篇
  1991年   11篇
  1990年   11篇
  1989年   8篇
  1988年   15篇
  1987年   9篇
  1986年   9篇
  1985年   11篇
  1984年   10篇
  1983年   12篇
  1982年   11篇
  1981年   12篇
  1980年   11篇
  1979年   5篇
  1978年   5篇
  1969年   7篇
  1967年   4篇
  1964年   4篇
排序方式: 共有8475条查询结果,搜索用时 15 毫秒
111.
112.
113.
114.
115.
116.
The liver is the major source of reduced glutathione (GSH) in blood plasma. The transport protein mediating the efflux of GSH across the basolateral membrane of human hepatocytes has not been identified so far. In this study we have localized the multidrug resistance protein 4 (MRP4; ABCC4) to the basolateral membrane of human, rat, and mouse hepatocytes and human hepatoma HepG2 cells. Recombinant human MRP4, expressed in V79 hamster fibroblasts and studied in membrane vesicles, mediated ATP-dependent cotransport of GSH or S-methyl-glutathione together with cholyltaurine, cholylglycine, or cholate. Several monoanionic bile salts and the quinoline derivative MK571 were potent inhibitors of this unidirectional transport. The K(m) values were 2.7 mmol/L for GSH and 1.2 mmol/L for the nonreducing S-methyl-glutathione in the presence of 5 micromol/L cholyltaurine, and 3.8 micromol/L for cholyltaurine in the presence of 5 mmol/L S-methyl-glutathione. Transport of bile salts by MRP4 was negligible in the absence of ATP or without S-methyl-glutathione. These findings identify a novel pathway for the efflux of GSH across the basolateral hepatocyte membrane into blood where it may serve as an antioxidant and as a source of cysteine for other organs. Moreover, MRP4-mediated bile salt transport across the basolateral membrane may function as an overflow pathway during impaired bile salt secretion across the canalicular membrane into bile. In conclusion, MRP4 can mediate the efflux of GSH from hepatocytes into blood by cotransport with monoanionic bile salts.  相似文献   
117.
118.
In cardiomyocytes, NaV1.5 channels mediate initiation and fast propagation of action potentials. The Ca2+-binding protein calmodulin (CaM) serves as a de facto subunit of NaV1.5. Genetic studies and atomic structures suggest that this interaction is pathophysiologically critical, as human mutations within the NaV1.5 carboxy-terminus that disrupt CaM binding are linked to distinct forms of life-threatening arrhythmias, including long QT syndrome 3, a “gain-of-function” defect, and Brugada syndrome, a “loss-of-function” phenotype. Yet, how a common disruption in CaM binding engenders divergent effects on NaV1.5 gating is not fully understood, though vital for elucidating arrhythmogenic mechanisms and for developing new therapies. Here, using extensive single-channel analysis, we find that the disruption of Ca2+-free CaM preassociation with NaV1.5 exerts two disparate effects: 1) a decrease in the peak open probability and 2) an increase in persistent NaV openings. Mechanistically, these effects arise from a CaM-dependent switch in the NaV inactivation mechanism. Specifically, CaM-bound channels preferentially inactivate from the open state, while those devoid of CaM exhibit enhanced closed-state inactivation. Further enriching this scheme, for certain mutant NaV1.5, local Ca2+ fluctuations elicit a rapid recruitment of CaM that reverses the increase in persistent Na current, a factor that may promote beat-to-beat variability in late Na current. In all, these findings identify the elementary mechanism of CaM regulation of NaV1.5 and, in so doing, unravel a noncanonical role for CaM in tuning ion channel gating. Furthermore, our results furnish an in-depth molecular framework for understanding complex arrhythmogenic phenotypes of NaV1.5 channelopathies.

Voltage-gated sodium channels (NaV) are responsible for the initiation and spatial propagation of action potentials (AP) in excitable cells (1, 2). NaV channels undergo rapid activation that underlie the AP upstroke while ensuing inactivation permits AP repolarization. The NaV1.5 channel constitutes the predominant isoform in cardiomyocytes, whose pore-forming α-subunit is encoded by the SCN5A gene. NaV1.5 dysfunction underlies diverse forms of cardiac disease including cardiomyopathies, arrhythmias, and sudden death (36). Human mutations in NaV1.5 are associated with two forms of inherited arrhythmias–congenital long QT syndrome 3 (LQTS3) and Brugada syndrome (BrS) (7). LQTS3 stems from delayed or incomplete inactivation of NaV1.5 that causes persistent Na influx that prolongs AP repolarization—a “gain-of-function” phenotype (79). BrS predisposes patients to sudden death and is associated with a reduction in the peak Na current that may slow cardiac conduction or cause region-specific repolarization differences—a “loss-of-function” phenotype (10, 11). Genetic studies have identified an expanding array of mutations in multiple NaV1.5 domains, including the channel carboxy-terminus (CT) that is a hotspot for mutations linked to both LQTS3 and BrS (12, 13). This domain interacts with the Ca2+-binding protein calmodulin (CaM), suggesting that altered CaM regulation of NaV1.5 may be a common pathophysiological mechanism (12, 1416). More broadly, human mutations in the homologous regions of neuronal NaV1.1 (17, 18), NaV1.2 (19, 20), and NaV1.6 (21) as well as skeletal muscle NaV1.4 (22) are linked to varied clinical phenotypes including epilepsy, autism spectrum disorder, neurodevelopmental delay, and myotonia (23). Taken together, a common NaV mechanistic deficit—defective CaM regulation—may underlie these diverse diseases.CaM regulation of NaV channels is complex, isoform specific, and mediated by multiple interfaces within the channel (1416). The NaV CT consists of a dual vestigial EF hand segment and a canonical CaM-binding “IQ” (isoleucine–glutamine) domain (24, 25) (Fig. 1A). The IQ domain of nearly all NaV channels binds to both Ca2+-free CaM (apoCaM) and Ca2+/CaM, similar to CaV channels (2631). As CaM is typically a Ca2+-dependent regulator, much attention has been focused on elucidating Ca2+-dependent changes in NaV gating. For skeletal muscle NaV1.4, transient elevation in cytosolic Ca2+ causes a dynamic reduction in the peak current, a process reminiscent of Ca2+/CaM-dependent inactivation of CaV channels (32). Cardiac NaV1.5 by comparison exhibits no dynamic effect of Ca2+ on the peak current (3234). Instead, sustained Ca2+ elevation has been shown to elicit a depolarizing shift in NaV1.5 steady-state inactivation (SSI or h), although the magnitude and the presence of a shift have been debated (32, 35). Additional CaM-binding sites have been identified in the channel amino terminus domain (36) and the III-IV linker near the isoleucine, phenylalanine, and methionine (IFM) motif that is well recognized for its role in fast inactivation (35, 37). However, recent cryogenic electron microscopy structures, biochemical, and functional analyses suggest that both the III-IV linker and the Domain IV voltage-sensing domain might instead interact with the channel CT in a state-dependent manner (3843).Open in a separate windowFig. 1.Absence of dynamic Ca2+/CaM effects on WT NaV1.5 SSI. (A, Left) Structure of NaV1.5 transmembrane domain (6UZ3) (70) juxtaposed with that of NaV1.5 CT–apoCaM complex (4OVN) (28). (Right) Arrhythmia-linked CT mutations highlighted in NaV1.5 CT–apoCaM structure (LQTS3, blue; BrS, magenta; mixed syndrome, purple). (B) Dynamic Ca2+-dependent changes in NaV1.5 SSI probed using Ca2+ photouncaging. Na currents specifying h at ∼100 nM (Left) and ∼4 μM Ca2+ step (Right). (C) Population data for NaV1.5 SSI under low (black, Left) versus high (red, Right) intracellular Ca2+ reveal no differences (P = 0.55, paired t test). Dots and bars are mean ± SEM (n = 8 cells). (D) FRET two-hybrid analysis of Cerulean-tagged apoCaM interaction with various Venus-tagged NaV1.5 CT (WT, black; IQ/AA, red; S[1904]L, blue). Each dot is FRET efficiency measured from a single cell. Solid line fits show 1:1 binding isotherm.Beyond Ca2+-dependent effects, the loss of apoCaM binding to the NaV1.5 IQ domain increases persistent current (34, 44), suggesting that apoCaM itself may be pathophysiologically relevant. Indeed, NaV1.5 mutations in the apoCaM-binding interface are associated with LQTS3 and atrial fibrillation (7), as well as a loss-of-function BrS phenotype and a mixed-syndrome phenotype whereby some patients present with BrS while others with LQTS3 (Fig. 1A) (13, 45). How alterations in CaM binding paradoxically elicits both gain-of-function and loss-of-function effects is not fully understood, though important to delineate pathophysiological mechanisms and for personalized therapies.Here, using single- and multichannel recordings, we show that apoCaM binding elicits two distinct effects on NaV1.5 gating: 1) an increase in the peak channel open probability (PO/peak) and 2) a reduction in the normalized persistent channel open probability (Rpersist), consistent with previous studies (34, 44). The two effects may explain how mixed-syndrome mutations in the NaV1.5 CT produce either BrS or LQTS3 phenotypes. On one hand, the loss of apoCaM association may diminish PO/peak and induce BrS by shunting cardiac AP. On the other hand, increased Rpersist may prevent normal AP repolarization, resulting in LQTS3. Analysis of elementary mechanisms suggests that these changes relate to a switch in the state dependence of channel inactivation. Furthermore, dynamic changes in Ca2+ can inhibit persistent current for certain mutant NaV1.5 owing to enhanced Ca2+/CaM binding that occurs over the timescale of a cardiac AP. This effect may result in beat-to-beat variability in persistent Na current for some mutations. In all, these findings explain how a common deficit in CaM binding can contribute to distinct arrhythmogenic mechanisms.  相似文献   
119.
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号