首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10198篇
  免费   545篇
  国内免费   78篇
耳鼻咽喉   116篇
儿科学   226篇
妇产科学   184篇
基础医学   1312篇
口腔科学   242篇
临床医学   1040篇
内科学   2435篇
皮肤病学   112篇
神经病学   1166篇
特种医学   352篇
外科学   1683篇
综合类   14篇
预防医学   297篇
眼科学   105篇
药学   640篇
中国医学   12篇
肿瘤学   885篇
  2024年   10篇
  2023年   55篇
  2022年   152篇
  2021年   219篇
  2020年   134篇
  2019年   185篇
  2018年   255篇
  2017年   212篇
  2016年   255篇
  2015年   237篇
  2014年   361篇
  2013年   499篇
  2012年   784篇
  2011年   717篇
  2010年   401篇
  2009年   391篇
  2008年   676篇
  2007年   644篇
  2006年   686篇
  2005年   662篇
  2004年   689篇
  2003年   599篇
  2002年   511篇
  2001年   104篇
  2000年   80篇
  1999年   90篇
  1998年   116篇
  1997年   86篇
  1996年   93篇
  1995年   81篇
  1994年   69篇
  1993年   73篇
  1992年   66篇
  1991年   66篇
  1990年   48篇
  1989年   60篇
  1988年   43篇
  1987年   39篇
  1986年   42篇
  1985年   34篇
  1984年   39篇
  1983年   29篇
  1982年   37篇
  1981年   33篇
  1980年   28篇
  1979年   17篇
  1978年   16篇
  1977年   12篇
  1975年   10篇
  1972年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Recently, the scientific community experienced two revolutionary events. The first was the synthesis of single-layer graphene, which boosted research in many different areas. The second was the advent of quantum technologies with the promise to become pervasive in several aspects of everyday life. In this respect, diamonds and nanodiamonds are among the most promising materials to develop quantum devices. Graphene and nanodiamonds can be coupled with other carbon nanostructures to enhance specific properties or be properly functionalized to tune their quantum response. This contribution briefly explores photoelectron spectroscopies and, in particular, X-ray photoelectron spectroscopy (XPS) and then turns to the present applications of this technique for characterizing carbon nanomaterials. XPS is a qualitative and quantitative chemical analysis technique. It is surface-sensitive due to its limited sampling depth, which confines the analysis only to the outer few top-layers of the material surface. This enables researchers to understand the surface composition of the sample and how the chemistry influences its interaction with the environment. Although the chemical analysis remains the main information provided by XPS, modern instruments couple this information with spatial resolution and mapping or with the possibility to analyze the material in operando conditions at nearly atmospheric pressures. Examples of the application of photoelectron spectroscopies to the characterization of carbon nanostructures will be reviewed to present the potentialities of these techniques.  相似文献   
92.
IntroductionSeveral functional neuroimaging studies on healthy controls and patients with migraine with aura have shown that the activation of functional networks during visual stimulation is not restricted to the striate system, but also includes several extrastriate networks.MethodsBefore and after 4 min of visual stimulation with a checkerboard pattern, we collected functional MRI in 21 migraine with aura (MwA) patients and 18 healthy subjects (HS). For each recording session, we identified independent resting-state networks in each group and correlated network connection strength changes with clinical disease features.ResultsBefore visual stimulation, we found reduced connectivity between the default mode network and the left dorsal attention system (DAS) in MwA patients compared to HS. In HS, visual stimulation increases functional connectivity between the independent components of the bilateral DAS and the executive control network (ECN). In MwA, visual stimulation significantly improved functional connectivity between the independent component pairs salience network and DAS, and between DAS and ECN. The ECN Z-scores after visual stimulation were negatively related to the monthly frequency of aura.ConclusionsIn individuals with MwA, 4 min of visual stimulation had stronger cognitive impact than in healthy people. A higher frequency of aura may lead to a diminished ability to obtain cognitive resources to cope with transitory but important events like aura-related focal neurological symptoms.  相似文献   
93.
While PI3K/AKT/mTOR pathway is altered in a variety of cancers including non small cell lung cancer, abnormalities in this pathway are more common in squamous cell lung carcinoma than in adenocarcinoma of the lung. Moreover, aberrant activation of PI3K/AKT/mTOR pathway is one of the mechanisms of acquired resistance to EGFR-TK inhibitors in patients with adenocarcinoma carrying EGFR activating mutations.  相似文献   
94.
95.
Trazodone is approved for the treatment of major depressive disorders, marketed as immediate release (IR), prolonged release, and once a day (OAD) formulation. The different formulations allow different administration schedules and may be useful to facilitate patients’ compliance to the antidepressant treatment. A previously verified physiologically‐based pharmacokinetic model based on in vitro and in vivo information on trazodone pharmacokinetics was applied, aiming at predicting brain receptor occupancy (RO) after single and repeated dosing of the IR formulation and repeated dosing of the OAD formulation in healthy subjects. Receptors included in the simulations were selected using static calculations of RO based on the maximum unbound brain concentration (Cmax,brain,u) of trazodone for each formulation and dosing scheme, resulting in 16 receptors being simulated. Seven receptors were simulated for the IR low dose formulation (30 mg), with similar t onset and duration of coverage (range: 0.09–0.25 h and 2.1–>24 h, respectively) as well as RO (range: 0.64–0.92) predicted between day 1 and day 7 of dosing. The 16 receptors evaluated for the OAD formulation (300 mg) showed high RO (range: 0.97–0.84 for the receptors also covered by the IR formulation and 0.73–0.48 for the remaining) correlating with affinity and similar duration of time above the target threshold to the IR formulation (range: 2–>24 h). The dose‐dependent receptor coverage supports the multimodal activity of trazodone, which may further contribute to its fast antidepressant action and effectiveness in controlling different symptoms in depressed patients.

Study Highlights
  • WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
The antidepressant efficacy of trazodone has been shown to be significantly correlated to its steady‐state plasma levels, and previous work has shown some understanding of trazodone range of affinity for different receptors, at different doses, but without considering the different available formulations. Trazodone is commonly available as: immediate release (IR), prolonged release (PR), and once a day (OAD) tablets. The IR formulation has a rapid onset and short duration of action, whereas the PR formulation is characterized by an absorption boost as soon as it is administered and has a comparatively delayed maximum concentration (Cmax). Conversely, the OAD formulation provides a controlled release of trazodone over 24 h without the early high peak plasma concentration seen with the IR and PR formulations.
  • WHAT QUESTION DID THIS STUDY ADDRESS?
This work aims to identify the brain receptors reaching a threshold occupancy of 50% through static predictions and determine the occupancy versus time profile for those of interest following administration of short‐ and long‐acting trazodone formulations.
  • WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
Brain receptor occupancy (RO) for key targets were predicted based on free drug concentrations, allowing for a physiologically relevant assessment of the different pathways affected by each formulation and dose.
  • HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR TRANSLATIONAL SCIENCE?
The presented physiologically‐based pharmacokinetic approach to assess RO can be used to guide formulation selection and dosing in clinical studies.  相似文献   
96.
In Italy, serogroup C meningococci of the clonal complex cc11 (MenC/cc11) have caused several outbreaks of invasive meningococcal disease (IMD) during the past 20 years. Between December 2019 and January 2020, an outbreak of six cases of IMD infected with MenC/cc11 was identified in a limited area in the northern part of Italy. All cases presented a severe clinical picture, and two of them were fatal. This report is focused on the microbiological and molecular analysis of meningococcal isolates with the aim to reconstruct the chain of transmission. It further presents the vaccination strategy adopted to control the outbreak. The phylogenetic evaluation demonstrated the close genetic proximity between the strain involved in this outbreak and a strain responsible for a larger epidemic that had occurred in 2015 and 2016 in the Tuscany Region. The rapid identification and characterisation of IMD cases and an extensive vaccination campaign contributed to the successful control of this outbreak caused by a hyperinvasive meningococcal strain.  相似文献   
97.
98.
99.
Human genomic diversity has been shaped by both ancient and ongoing challenges from viruses. The current coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a devastating impact on population health. However, genetic diversity and evolutionary forces impacting host genes related to SARS-CoV-2 infection are not well understood. We investigated global patterns of genetic variation and signatures of natural selection at host genes relevant to SARS-CoV-2 infection (angiotensin converting enzyme 2 [ACE2], transmembrane protease serine 2 [TMPRSS2], dipeptidyl peptidase 4 [DPP4], and lymphocyte antigen 6 complex locus E [LY6E]). We analyzed data from 2,012 ethnically diverse Africans and 15,977 individuals of European and African ancestry with electronic health records and integrated with global data from the 1000 Genomes Project. At ACE2, we identified 41 nonsynonymous variants that were rare in most populations, several of which impact protein function. However, three nonsynonymous variants (rs138390800, rs147311723, and rs145437639) were common among central African hunter-gatherers from Cameroon (minor allele frequency 0.083 to 0.164) and are on haplotypes that exhibit signatures of positive selection. We identify signatures of selection impacting variation at regulatory regions influencing ACE2 expression in multiple African populations. At TMPRSS2, we identified 13 amino acid changes that are adaptive and specific to the human lineage compared with the chimpanzee genome. Genetic variants that are targets of natural selection are associated with clinical phenotypes common in patients with COVID-19. Our study provides insights into global variation at host genes related to SARS-CoV-2 infection, which have been shaped by natural selection in some populations, possibly due to prior viral infections.

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Coronaviruses are enveloped, positive-sense, and single-stranded RNA viruses, many of which are zoonotic pathogens that crossed over into humans. Seven coronavirus species, including SARS-CoV-2, have been discovered that, depending on the virus and host physiological condition, may cause mild or lethal respiratory disease. There is considerable variation in disease prevalence and severity across populations and communities. Importantly, minority populations in the United States appear to have been disproportionally affected by COVID-19 (1, 2). For example, in Chicago, more than 50% of COVID-19 cases and nearly 70% of COVID-19 deaths are in African Americans (who make up 30% of the population of Chicago) (1). While social and economic factors are largely responsible for driving COVID-19 health disparities, investigating genetic diversity at host genes related to SARS-CoV-2 infection could help identify functionally important variation, which may play a role in individual risk for severe COVID-19 infection.In this study, we focused on four key genes playing a role in SARS-CoV-2 infection (3). The ACE2 gene, encoding the angiotensin-converting enzyme-2 protein, was reported to be a main binding site for severe acute respiratory syndrome coronavirus (SARS-CoV) during an outbreak in 2003, and evidence showed stronger binding affinity to SARS-CoV-2, which enters the target cells via ACE2 receptors (3, 4). The ACE2 gene is located on the X chromosome (chrX); its expression level varies among populations (5); and it is ubiquitously expressed in the lung, blood vessels, gut, kidney, testis, and brain, all organs that appear to be affected as part of the COVID-19 clinical spectrum (6). SARS-CoV-2 infects cells through a membrane fusion mechanism, which in the case of SARS-CoV, is known to induce down-regulation of ACE2 (7). Such down-regulation has been shown to cause inefficient counteraction of angiotensin II effects, leading to enhanced pulmonary inflammation and intravascular coagulation (7). Additionally, altered expression of ACE2 has been associated with cardiovascular and cerebrovascular disease, which is highly relevant to COVID-19 as several cardiovascular conditions are associated with severe disease. TMPRSS2, located on the outer membrane of host target cells, binds to and cleaves ACE2, resulting in activation of spike proteins on the viral envelope and facilitating membrane fusion and endocytosis (8). Two additional genes, DPP4 and LY6E, have been shown to play an important role in the entry of SARS-CoV-2 virus into host cells. DPP4 is a known functional receptor for the Middle East respiratory syndrome coronavirus (MERS-CoV), causing a severe respiratory illness with high mortality (9, 10). LY6E encodes a glycosylphosphatidylinositol-anchored cell surface protein, which is a critical antiviral immune effector that controls coronavirus infection and pathogenesis (11). Mice lacking LY6E in hematopoietic cells were susceptible to murine coronavirus infection (11).Previous studies of genetic diversity at ACE2 and TMPRSS2 in global human populations did not include an extensive set of African populations (5, 1214). No common coding variants (defined here as minor allele frequency [MAF] > 0.05) at ACE2 were identified in any prior population studies. However, few studies included diverse indigenous African populations whose genomes harbor the greatest diversity among humans. This leads to a substantial disparity in the representation of African ancestries in human genetic studies of COVID-19, impeding health equity as the transferability of findings based on non-African ancestries to African populations can be low (15). Including more African populations in studying the genetic diversity of genes involved in SARS-CoV-2 infection is extremely necessary. Additionally, the evolutionary forces underlying global patterns of genetic diversity at host genes related to SARS-CoV-2 infection are not well understood. Using methods to detect natural selection signatures at host genes related to viral infections helps identify putatively functional variants that could play a role in disease risk.We characterized genetic variation and studied natural selection signatures at ACE2, TMPRSS2, DPP4, and LY6E in ethnically diverse human populations by analyzing 2,012 genomes from ethnically diverse Africans (referred to as the “African diversity” dataset), 2,504 genomes from the 1000 Genomes Project (1KG), and whole-exome sequencing of 15,977 individuals of European ancestry (EA) and African ancestry from the Penn Medicine BioBank (PMBB) dataset (SI Appendix, Fig. S1). The African diversity dataset includes populations with diverse subsistence patterns (hunter-gatherers, pastoralists, agriculturalists) and speaking languages belonging to the four major language families in Africa (Khoesan; Niger–Congo, of which Bantu is the largest subfamily; Afroasiatic; and Nilo-Saharan). We identify functionally relevant variation, compare the patterns of variation across global populations, and provide insight into the evolutionary forces underlying these patterns of genetic variation. In addition, we perform an association study using the variants identified from whole-exome sequencing at the four genes and clinical traits derived from electronic health record (EHR) data linked to the subjects enrolled in the PMBB. The EHR data include diseases related to organ dysfunctions associated with severe COVID-19, such as respiratory, cardiovascular, liver, and renal complications. Our study of genetic variation in genes involved in SARS-CoV-2 infection provides data to investigate infection susceptibility within and between populations and indicates that variants in these genes may play a role in comorbidities relevant to COVID-19 severity.  相似文献   
100.
The effect of renal impairment (RI) on risk of bleeding and recurrent thrombosis in cancer patients treated with direct oral anticoagulants for venous thromboembolism (VTE) is undefined. We ran a prespecified analysis of the randomized Caravaggio study to evaluate the role of RI as a risk factor for bleeding or recurrence in patients treated with dalteparin or apixaban for cancer-associated VTE. RI was graded as moderate (creatinine clearance between 30-59 mL/minute; 275 patients) and mild (between 60-89 mL/minute; 444 patients). In the 1142 patients included in this analysis, the incidence of major bleeding was similar in patients with moderate vs. no or mild RI (HR 1.06-95% CI: 0.53-2.11), with no difference in the relative safety of apixaban and dalteparin. Recurrent VTE was not different in moderate vs. no or mild RI (HR=0.67, 95% CI: 0.38-1.20); in moderate RI, apixaban reduced recurrent VTE compared to dalteparin (HR=0.27, 95% CI: 0.08-0.96; P for interaction 0.1085). At multivariate analysis, no association was found between variation of renal function over time and major bleeding or recurrent VTE. Advanced or metastatic cancer was the only independent predictor of major bleeding (HR=2.84, 95% CI: 1.20-6.71), with no effect of treatment with apixaban or dalteparin. In our study, in cancer patients treated with apixaban or dalteparin, moderate RI was not associated with major bleeding or recurrent VTE. In patients with moderate renal failure, the safety profile of apixaban was confirmed with the potential for improved efficacy in comparison to dalteparin. ClinicalTrials.gov identifier: NCT03045406.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号