首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   580335篇
  免费   31647篇
  国内免费   1444篇
耳鼻咽喉   7171篇
儿科学   18204篇
妇产科学   13813篇
基础医学   98491篇
口腔科学   13533篇
临床医学   52951篇
内科学   107361篇
皮肤病学   12700篇
神经病学   38388篇
特种医学   21459篇
外国民族医学   55篇
外科学   85009篇
综合类   9740篇
现状与发展   4篇
一般理论   115篇
预防医学   41666篇
眼科学   12653篇
药学   45612篇
  9篇
中国医学   2113篇
肿瘤学   32379篇
  2021年   5723篇
  2019年   5223篇
  2018年   7214篇
  2017年   5289篇
  2016年   6112篇
  2015年   6911篇
  2014年   9129篇
  2013年   12915篇
  2012年   18794篇
  2011年   20686篇
  2010年   11907篇
  2009年   10622篇
  2008年   18423篇
  2007年   20217篇
  2006年   19562篇
  2005年   18673篇
  2004年   18076篇
  2003年   17143篇
  2002年   16517篇
  2001年   23789篇
  2000年   24352篇
  1999年   20169篇
  1998年   5705篇
  1997年   4714篇
  1996年   4750篇
  1995年   4420篇
  1992年   15081篇
  1991年   16405篇
  1990年   16510篇
  1989年   16187篇
  1988年   14783篇
  1987年   14637篇
  1986年   13588篇
  1985年   13042篇
  1984年   9669篇
  1983年   8217篇
  1982年   4301篇
  1979年   9174篇
  1978年   6550篇
  1977年   5279篇
  1976年   5607篇
  1975年   6738篇
  1974年   7583篇
  1973年   7307篇
  1972年   6738篇
  1971年   6429篇
  1970年   5998篇
  1969年   5559篇
  1968年   5250篇
  1967年   4705篇
排序方式: 共有10000条查询结果,搜索用时 26 毫秒
61.

Background

Rosacea is a chronic inflammatory skin condition whose etiology has been linked to mast cells and the antimicrobial peptide cathelicidin LL-37. Individuals with refractory disease have demonstrated clinical benefit with periodic injections of onabotulinum toxin, but the mechanism of action is unknown.

Objectives

To investigate the molecular mechanism by which botulinum toxin improves rosacea lesions.

Methods

Primary human and murine mast cells were pretreated with onabotulinum toxin A or B or control. Mast cell degranulation was evaluated by β-hexosaminidase activity. Expression of botulinum toxin receptor Sv2 was measured by qPCR. The presence of SNAP-25 and VAMP2 was established by immunofluorescence. In vivo rosacea model was established by intradermally injecting LL-37 with or without onabotulinum toxin A pretreatment. Mast cell degranulation was assessed in vivo by histologic counts. Rosacea biomarkers were analyzed by qPCR of mouse skin sections.

Results

Onabotulinum toxin A and B inhibited compound 48/80-induced degranulation of both human and murine mast cells. Expression of Sv2 was established in mouse mast cells. Onabotulinum toxin A and B increased cleaved SNAP-25 and decreased VAMP2 staining in mast cells respectively. In mice, injection of onabotulinum toxin A significantly reduced LL-37-induced skin erythema, mast cell degranulation, and mRNA expression of rosacea biomarkers.

Conclusions

These findings suggest that onabotulinum toxin reduces rosacea-associated skin inflammation by directly inhibiting mast cell degranulation. Periodic applications of onabotulinum toxin may be an effective therapy for refractory rosacea and deserves further study.  相似文献   
62.
63.
Journal of Thrombosis and Thrombolysis - Over the last few years data from our group have indicated that α-synuclein is important in development of immune cells as well as potentially...  相似文献   
64.
65.
66.
BACKGROUND AND PURPOSE:In the chronic phase after traumatic brain injury, DTI findings reflect WM integrity. DTI interpretation in the subacute phase is less straightforward. Microbleed evaluation with SWI is straightforward in both phases. We evaluated whether the microbleed concentration in the subacute phase is associated with the integrity of normal-appearing WM in the chronic phase.MATERIALS AND METHODS:Sixty of 211 consecutive patients 18 years of age or older admitted to our emergency department ≤24 hours after moderate to severe traumatic brain injury matched the selection criteria. Standardized 3T SWI, DTI, and T1WI were obtained 3 and 26 weeks after traumatic brain injury in 31 patients and 24 healthy volunteers. At baseline, microbleed concentrations were calculated. At follow-up, mean diffusivity (MD) was calculated in the normal-appearing WM in reference to the healthy volunteers (MDz). Through linear regression, we evaluated the relation between microbleed concentration and MDz in predefined structures.RESULTS:In the cerebral hemispheres, MDz at follow-up was independently associated with the microbleed concentration at baseline (left: B = 38.4 [95% CI 7.5–69.3], P = .017; right: B = 26.3 [95% CI 5.7–47.0], P = .014). No such relation was demonstrated in the central brain. MDz in the corpus callosum was independently associated with the microbleed concentration in the structures connected by WM tracts running through the corpus callosum (B = 20.0 [95% CI 24.8–75.2], P < .000). MDz in the central brain was independently associated with the microbleed concentration in the cerebral hemispheres (B = 25.7 [95% CI 3.9–47.5], P = .023).CONCLUSIONS:SWI-assessed microbleeds in the subacute phase are associated with DTI-based WM integrity in the chronic phase. These associations are found both within regions and between functionally connected regions.

The yearly incidence of traumatic brain injury (TBI) is around 300 per 100,000 persons.1,2 Almost three-quarters of patients with moderate to severe TBI have traumatic axonal injury (TAI).3 TAI is a major predictor of functional outcome,4,5 but it is mostly invisible on CT and conventional MR imaging.6,7DTI provides direct information on WM integrity and axonal injury.5,8 However, DTI abnormalities are neither specific for TAI nor stable over time. Possibly because of the release of mass effect and edema and resorption of blood products, the effects of concomitant (non-TAI) injury on DTI are larger in the subacute than in the chronic phase (>3 months).4,9,10 Therefore, DTI findings are expected to reflect TAI more specifically in the chronic than in the subacute phase (1 week–3 months).4 Even in regions without concomitant injury, the effects of TAI on DTI are dynamic, possibly caused by degeneration and neuroplastic changes.6,11,12 These ongoing pathophysiological processes possibly contribute to the emerging evidence that DTI findings in the chronic phase are most closely associated with the eventual functional outcome.12,13Although DTI provides valuable information, its acquisition, postprocessing, and interpretation in individual patients are demanding. SWI, with which microbleeds can be assessed with high sensitivity, is easier to interpret and implement in clinical practice. In contrast to DTI, SWI-detected traumatic microbleeds are more stable1 except in the hyperacute14,15 and the late chronic phases.16 Traumatic cerebral microbleeds are commonly interpreted as signs of TAI. However, the relation is not straightforward. On the one hand, nontraumatic microbleeds may be pre-existing. On the other hand, even if traumatic in origin, microbleeds represent traumatic vascular rather than axonal injury.17 Indeed, TAI is not invariably hemorrhagic.18 Additionally, microbleeds may secondarily develop after trauma through mechanisms unrelated to axonal injury, such as secondary ischemia.18DTI is not only affected by pathophysiological changes but also by susceptibility.19 The important susceptibility-effect generated by microbleeds renders the interpretation of DTI findings at the location of microbleeds complex. In the chronic phase, mean diffusivity (MD) is the most robust marker of WM integrity.4,6 For these reasons, we evaluated MD in the normal-appearing WM.Much TAI research focuses on the corpus callosum because it is commonly involved in TAI5,18,20 and it can reliably be evaluated with DTI,5,21 and TAI in the corpus callosum is related to clinical prognosis.6,20 The corpus callosum consists of densely packed WM tracts that structurally and functionally connect left- and right-sided brain structures.22 The integrity of the corpus callosum is associated with the integrity of the brain structures it connects.23 Therefore, microbleeds in brain structures that are connected through the corpus callosum may affect callosal DTI findings. Analogous to this, microbleeds in the cerebral hemispheres, which exert their function through WM tracts traveling through the deep brain structures and brain stem,24,25 may affect DTI findings in the WM of the latter.Our purpose was to evaluate whether the microbleed concentration in the subacute phase is associated with the integrity of normal-appearing WM in the chronic phase. We investigated this relation within the cerebral hemispheres and the central brain and between regions that are functionally connected by WM tracts.  相似文献   
67.

Background

Pump speed optimization in patients implanted with a ventricular assist device represents a major challenge during the follow-up period. We present our findings on whether combined invasive hemodynamic ramp tests and cardiopulmonary exercise testing (CPX) can help optimize patient management.

Methods

Eighteen patients implanted with a HeartMate 3 (HM3) device underwent ramp tests with right heart catheterization (including central venous pressure [CVP], pulmonary artery pressure, pulmonary capillary wedge pressure [PCWP], and blood pressure) and echocardiography. Data were recorded at up to 4 speed settings. Speed changes were in steps of 200 revolutions/min (rpm). Evaluation of functional capacity by CPX was conducted according to the modified Bruce protocol.

Results

Only 30% of patients had normal PCWPs at their original rpm settings. In going from lowest to highest speeds, cardiac output improved by 0.25 ± 0.35 L/min/step (total change, 1.28 ± 0.3 L/min), and PCWP decreased by 1.9 ± 0.73 mm Hg/step (total change, 6 ± 1.6 mm Hg). CVP and systolic blood pressure did not change significantly with rpm. The rpm assessment was adjusted based on test results to achieve CVPs and PCWPs as close to normal limits as possible, which was feasible in all patients. On CPX, all patients demonstrated good performance (peak VO2, 16.8 ± 3.5 mL/kg/min).

Conclusion

Hemodynamic ramp testing provides an objective means of optimizing rpm, and has the potential to provide good exercise tolerance.  相似文献   
68.
Immune defenses provide resistance against infectious disease that is critical to survival. But immune defenses are costly, and limited resources allocated to immunity are not available for other physiological or developmental processes. We propose a framework for explaining variation in patterns of investment in two important subsystems of anti-pathogen defense: innate (non-specific) and acquired (specific) immunity. The developmental costs of acquired immunity are high, but the costs of maintenance and activation are relatively low. Innate immunity imposes lower upfront developmental costs, but higher operating costs. Innate defenses are mobilized quickly and are effective against novel pathogens. Acquired responses are less effective against novel exposures, but more effective against secondary exposures due to immunological memory. Based on their distinct profiles of costs and effectiveness, we propose that the balance of investment in innate versus acquired immunity is variable, and that this balance is optimized in response to local ecological conditions early in development. Nutritional abundance, high pathogen exposure and low signals of extrinsic mortality risk during sensitive periods of immune development should all favor relatively higher levels of investment in acquired immunity. Undernutrition, low pathogen exposure, and high mortality risk should favor innate immune defenses. The hypothesis provides a framework for organizing prior empirical research on the impact of developmental environments on innate and acquired immunity, and suggests promising directions for future research in human ecological immunology.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号