首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1473715篇
  免费   121061篇
  国内免费   6737篇
耳鼻咽喉   18293篇
儿科学   46429篇
妇产科学   38727篇
基础医学   201627篇
口腔科学   39260篇
临床医学   134178篇
内科学   305990篇
皮肤病学   34699篇
神经病学   123166篇
特种医学   61428篇
外国民族医学   288篇
外科学   231411篇
综合类   33166篇
现状与发展   2篇
一般理论   512篇
预防医学   116717篇
眼科学   31029篇
药学   102441篇
  5篇
中国医学   2446篇
肿瘤学   79699篇
  2019年   11790篇
  2018年   16519篇
  2017年   13087篇
  2016年   15549篇
  2015年   17413篇
  2014年   24345篇
  2013年   35692篇
  2012年   45140篇
  2011年   48368篇
  2010年   29853篇
  2009年   29121篇
  2008年   44902篇
  2007年   47748篇
  2006年   48739篇
  2005年   47281篇
  2004年   44771篇
  2003年   43352篇
  2002年   41060篇
  2001年   67597篇
  2000年   69191篇
  1999年   58202篇
  1998年   18342篇
  1997年   16320篇
  1996年   17111篇
  1995年   17207篇
  1994年   15985篇
  1993年   14956篇
  1992年   47992篇
  1991年   46563篇
  1990年   44690篇
  1989年   42487篇
  1988年   39356篇
  1987年   38676篇
  1986年   36436篇
  1985年   35201篇
  1984年   27006篇
  1983年   22676篇
  1982年   14593篇
  1981年   13138篇
  1980年   12303篇
  1979年   24003篇
  1978年   17570篇
  1977年   14763篇
  1976年   13565篇
  1975年   14033篇
  1974年   16486篇
  1973年   15748篇
  1972年   14492篇
  1971年   13262篇
  1970年   12113篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
72.
73.
Using data on waterfowl band recoveries, we identified spatially explicit hotspots of concentrated waterfowl movement to predict occurrence and spatial spread of a novel influenza A virus (clade 2.3.4.4) introduced from Asia by waterfowl from an initial outbreak in North America in November 2014. In response to the outbreak, the hotspots of waterfowl movement were used to help guide sampling for clade 2.3.4.4 viruses in waterfowl as an early warning for the US poultry industry during the outbreak . After surveillance sampling of waterfowl, we tested whether there was greater detection of clade 2.3.4.4 viruses inside hotspots. We found that hotspots defined using kernel density estimates of waterfowl band recoveries worked well in predicting areas with higher prevalence of the viruses in waterfowl. This approach exemplifies the value of ecological knowledge in predicting risk to agricultural security.  相似文献   
74.
BACKGROUND AND PURPOSE:In the chronic phase after traumatic brain injury, DTI findings reflect WM integrity. DTI interpretation in the subacute phase is less straightforward. Microbleed evaluation with SWI is straightforward in both phases. We evaluated whether the microbleed concentration in the subacute phase is associated with the integrity of normal-appearing WM in the chronic phase.MATERIALS AND METHODS:Sixty of 211 consecutive patients 18 years of age or older admitted to our emergency department ≤24 hours after moderate to severe traumatic brain injury matched the selection criteria. Standardized 3T SWI, DTI, and T1WI were obtained 3 and 26 weeks after traumatic brain injury in 31 patients and 24 healthy volunteers. At baseline, microbleed concentrations were calculated. At follow-up, mean diffusivity (MD) was calculated in the normal-appearing WM in reference to the healthy volunteers (MDz). Through linear regression, we evaluated the relation between microbleed concentration and MDz in predefined structures.RESULTS:In the cerebral hemispheres, MDz at follow-up was independently associated with the microbleed concentration at baseline (left: B = 38.4 [95% CI 7.5–69.3], P = .017; right: B = 26.3 [95% CI 5.7–47.0], P = .014). No such relation was demonstrated in the central brain. MDz in the corpus callosum was independently associated with the microbleed concentration in the structures connected by WM tracts running through the corpus callosum (B = 20.0 [95% CI 24.8–75.2], P < .000). MDz in the central brain was independently associated with the microbleed concentration in the cerebral hemispheres (B = 25.7 [95% CI 3.9–47.5], P = .023).CONCLUSIONS:SWI-assessed microbleeds in the subacute phase are associated with DTI-based WM integrity in the chronic phase. These associations are found both within regions and between functionally connected regions.

The yearly incidence of traumatic brain injury (TBI) is around 300 per 100,000 persons.1,2 Almost three-quarters of patients with moderate to severe TBI have traumatic axonal injury (TAI).3 TAI is a major predictor of functional outcome,4,5 but it is mostly invisible on CT and conventional MR imaging.6,7DTI provides direct information on WM integrity and axonal injury.5,8 However, DTI abnormalities are neither specific for TAI nor stable over time. Possibly because of the release of mass effect and edema and resorption of blood products, the effects of concomitant (non-TAI) injury on DTI are larger in the subacute than in the chronic phase (>3 months).4,9,10 Therefore, DTI findings are expected to reflect TAI more specifically in the chronic than in the subacute phase (1 week–3 months).4 Even in regions without concomitant injury, the effects of TAI on DTI are dynamic, possibly caused by degeneration and neuroplastic changes.6,11,12 These ongoing pathophysiological processes possibly contribute to the emerging evidence that DTI findings in the chronic phase are most closely associated with the eventual functional outcome.12,13Although DTI provides valuable information, its acquisition, postprocessing, and interpretation in individual patients are demanding. SWI, with which microbleeds can be assessed with high sensitivity, is easier to interpret and implement in clinical practice. In contrast to DTI, SWI-detected traumatic microbleeds are more stable1 except in the hyperacute14,15 and the late chronic phases.16 Traumatic cerebral microbleeds are commonly interpreted as signs of TAI. However, the relation is not straightforward. On the one hand, nontraumatic microbleeds may be pre-existing. On the other hand, even if traumatic in origin, microbleeds represent traumatic vascular rather than axonal injury.17 Indeed, TAI is not invariably hemorrhagic.18 Additionally, microbleeds may secondarily develop after trauma through mechanisms unrelated to axonal injury, such as secondary ischemia.18DTI is not only affected by pathophysiological changes but also by susceptibility.19 The important susceptibility-effect generated by microbleeds renders the interpretation of DTI findings at the location of microbleeds complex. In the chronic phase, mean diffusivity (MD) is the most robust marker of WM integrity.4,6 For these reasons, we evaluated MD in the normal-appearing WM.Much TAI research focuses on the corpus callosum because it is commonly involved in TAI5,18,20 and it can reliably be evaluated with DTI,5,21 and TAI in the corpus callosum is related to clinical prognosis.6,20 The corpus callosum consists of densely packed WM tracts that structurally and functionally connect left- and right-sided brain structures.22 The integrity of the corpus callosum is associated with the integrity of the brain structures it connects.23 Therefore, microbleeds in brain structures that are connected through the corpus callosum may affect callosal DTI findings. Analogous to this, microbleeds in the cerebral hemispheres, which exert their function through WM tracts traveling through the deep brain structures and brain stem,24,25 may affect DTI findings in the WM of the latter.Our purpose was to evaluate whether the microbleed concentration in the subacute phase is associated with the integrity of normal-appearing WM in the chronic phase. We investigated this relation within the cerebral hemispheres and the central brain and between regions that are functionally connected by WM tracts.  相似文献   
75.
76.

Background

The ZOE-50 (NCT01165177) and ZOE-70 (NCT01165229) phase 3 clinical trials showed that the adjuvanted recombinant zoster vaccine (RZV) was ≥90% efficacious in preventing herpes zoster in adults. Here we present a comprehensive overview of the safety data from these studies.

Methods

Adults aged ≥50 (ZOE-50) and ≥70 (ZOE-70) years were randomly vaccinated with RZV or placebo. Safety analyses were performed on the pooled total vaccinated cohort, consisting of participants receiving at least one dose of RZV or placebo. Solicited and unsolicited adverse events (AEs) were collected for 7 and 30?days after each vaccination, respectively. Serious AEs (SAEs) were collected from the first vaccination until 12?months post-last dose. Fatal AEs, vaccination-related SAEs, and potential immune-mediated diseases (pIMDs) were collected during the entire study period.

Results

Safety was evaluated in 14,645 RZV and 14,660 placebo recipients. More RZV than placebo recipients reported unsolicited AEs (50.5% versus 32.0%); the difference was driven by transient injection site and solicited systemic reactions that were generally seen in the first week post-vaccination. The occurrence of overall SAEs (RZV: 10.1%; Placebo: 10.4%), fatal AEs (RZV: 4.3%; Placebo: 4.6%), and pIMDs (RZV: 1.2%; Placebo: 1.4%) was balanced between groups. The occurrence of possible exacerbations of pIMDs was rare and similar between groups. Overall, except for the expected local and systemic symptoms, the safety results were comparable between the RZV and Placebo groups irrespective of participant age, gender, or race.

Conclusions

No safety concerns arose, supporting the favorable benefit-risk profile of RZV.  相似文献   
77.
Microglia, the innate immune cells of the CNS, perform critical inflammatory and noninflammatory functions that maintain normal neural function. For example, microglia clear misfolded proteins, elaborate trophic factors, and regulate and terminate toxic inflammation. In Alzheimer’s disease (AD), however, beneficial microglial functions become impaired, accelerating synaptic and neuronal loss. Better understanding of the molecular mechanisms that contribute to microglial dysfunction is an important objective for identifying potential strategies to delay progression to AD. The inflammatory cyclooxygenase/prostaglandin E2 (COX/PGE2) pathway has been implicated in preclinical AD development, both in human epidemiology studies and in transgenic rodent models of AD. Here, we evaluated murine models that recapitulate microglial responses to Aβ peptides and determined that microglia-specific deletion of the gene encoding the PGE2 receptor EP2 restores microglial chemotaxis and Aβ clearance, suppresses toxic inflammation, increases cytoprotective insulin-like growth factor 1 (IGF1) signaling, and prevents synaptic injury and memory deficits. Our findings indicate that EP2 signaling suppresses beneficial microglia functions that falter during AD development and suggest that inhibition of the COX/PGE2/EP2 immune pathway has potential as a strategy to restore healthy microglial function and prevent progression to AD.  相似文献   
78.
Immune defenses provide resistance against infectious disease that is critical to survival. But immune defenses are costly, and limited resources allocated to immunity are not available for other physiological or developmental processes. We propose a framework for explaining variation in patterns of investment in two important subsystems of anti-pathogen defense: innate (non-specific) and acquired (specific) immunity. The developmental costs of acquired immunity are high, but the costs of maintenance and activation are relatively low. Innate immunity imposes lower upfront developmental costs, but higher operating costs. Innate defenses are mobilized quickly and are effective against novel pathogens. Acquired responses are less effective against novel exposures, but more effective against secondary exposures due to immunological memory. Based on their distinct profiles of costs and effectiveness, we propose that the balance of investment in innate versus acquired immunity is variable, and that this balance is optimized in response to local ecological conditions early in development. Nutritional abundance, high pathogen exposure and low signals of extrinsic mortality risk during sensitive periods of immune development should all favor relatively higher levels of investment in acquired immunity. Undernutrition, low pathogen exposure, and high mortality risk should favor innate immune defenses. The hypothesis provides a framework for organizing prior empirical research on the impact of developmental environments on innate and acquired immunity, and suggests promising directions for future research in human ecological immunology.  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号