首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2674篇
  免费   153篇
  国内免费   13篇
耳鼻咽喉   18篇
儿科学   152篇
妇产科学   50篇
基础医学   352篇
口腔科学   76篇
临床医学   174篇
内科学   468篇
皮肤病学   24篇
神经病学   169篇
特种医学   84篇
外科学   290篇
综合类   79篇
预防医学   155篇
眼科学   173篇
药学   344篇
中国医学   55篇
肿瘤学   177篇
  2023年   22篇
  2022年   59篇
  2021年   106篇
  2020年   55篇
  2019年   77篇
  2018年   88篇
  2017年   54篇
  2016年   91篇
  2015年   79篇
  2014年   129篇
  2013年   122篇
  2012年   208篇
  2011年   216篇
  2010年   124篇
  2009年   92篇
  2008年   152篇
  2007年   134篇
  2006年   129篇
  2005年   99篇
  2004年   94篇
  2003年   90篇
  2002年   80篇
  2001年   39篇
  2000年   38篇
  1999年   24篇
  1998年   21篇
  1997年   21篇
  1996年   13篇
  1995年   7篇
  1994年   7篇
  1993年   9篇
  1992年   40篇
  1991年   34篇
  1990年   23篇
  1989年   35篇
  1988年   23篇
  1987年   18篇
  1986年   13篇
  1985年   13篇
  1984年   24篇
  1983年   14篇
  1980年   8篇
  1979年   17篇
  1976年   10篇
  1975年   9篇
  1974年   11篇
  1973年   13篇
  1972年   12篇
  1971年   9篇
  1969年   9篇
排序方式: 共有2840条查询结果,搜索用时 15 毫秒
61.
Cocaine and other drug dependencies are associated with significant attentional bias for drug use stimuli that represents a candidate cognitive marker of drug dependence and treatment outcomes. We explored, using fMRI, the role of discrete neural processing networks in the representation of individual differences in the drug attentional bias effect associated with cocaine dependence (AB-coc) using a word counting Stroop task with personalized cocaine use stimuli (cocStroop). The cocStroop behavioral and neural responses were further compared with those associated with a negative emotional word Stroop task (eStroop) and a neutral word counting Stroop task (cStroop). Brain–behavior correlations were explored using both network-level correlation analysis following independent component analysis (ICA) and voxel-level, brain-wide univariate correlation analysis. Variation in the attentional bias effect for cocaine use stimuli among cocaine-dependent men and women was related to the recruitment of two separate neural processing networks related to stimulus attention and salience attribution (inferior frontal–parietal–ventral insula), and the processing of the negative affective properties of cocaine stimuli (frontal–temporal–cingulate). Recruitment of a sensory–motor–dorsal insula network was negatively correlated with AB-coc and suggested a regulatory role related to the sensorimotor processing of cocaine stimuli. The attentional bias effect for cocaine stimuli and for negative affective word stimuli were significantly correlated across individuals, and both were correlated with the activity of the frontal–temporal–cingulate network. Functional connectivity for a single prefrontal–striatal–occipital network correlated with variation in general cognitive control (cStroop) that was unrelated to behavioral or neural network correlates of cocStroop- or eStroop-related attentional bias. A brain-wide mass univariate analysis demonstrated the significant correlation of individual attentional bias effect for cocaine stimuli with distributed activations in the frontal, occipitotemporal, parietal, cingulate, and premotor cortex. These findings support the involvement of multiple processes and brain networks in mediating individual differences in risk for relapse associated with drug dependence.  相似文献   
62.
Oxidation of vinamidinium salts with meta-chloroperbenzoic acid is the key synthetic step towards new persistent 1,3-di(amino)oxyallyl radical cations. When applied to parent vinamidines, this protocol allows for a simple straightforward synthesis of α-keto-β-diimine ligands, for which no convenient synthesis was previously available.

Oxidation of vinamidinium salts with meta-chloroperbenzoic acid not only provides access to new persistent 1,3-di(amino)oxyallyl radical cations, but also to α-keto-β-diimine ligands, for which no convenient synthesis was previously available.

β-Diketiminates, so-called NacNac ligands (Scheme 1), have been a focus in coordination chemistry for decades.1 Structural modifications include a large variety of N-substituents, as well as bulky,2 electron-withdrawing,3 or electron donating4 R groups. Substitution at the central carbon atom (R′ ≠ H) has also been explored as a strategy to tame this reactive position and enhance the chemical stability of the complex.5 The α-keto-β-diimines are among rare representatives with a more significant modification at the central carbon. These electron-deficient ligands have found applications in the design of highly active nickel(ii) initiators for the synthesis of high molecular weight polyethylenes and poly-α-olefins.6 Interestingly, low-disperse semi-crystalline polymers could be obtained under living conditions and remarkable enantiomorphic site control could be achieved.7Open in a separate windowScheme 1Previously reported synthesis of α-keto-β-diimines and synthesis of air-persistent radical 4˙+ from vinamidinium 3.The low availability of α-keto-β-diimines has clearly hampered further development. Their metal complexes have been known for long, but only as occasional by-products from the air-decomposition of unprotected NacNac complexes (R′ = H).8 To date only a rare selective oxygen-degradation of copper(ii) complexes allows for the synthesis of a handful of 2,4-di(arylimino)pentan-3-ones 2 from the corresponding vinamidines 1.6a,d,9 The procedure requires (i) the synthesis of the NacNac–Cu(ii) complex, (ii) oxidation at the ligand with dioxygen in a methanol/dichloromethane mixture, (iii) the decomplexation and hydrolysis of the resulting hemiacetal ligand (Scheme 1). In turn, we had to synthesize 2,4-bis((2,6-diisopropylphenyl)imino)pentan-3-one 2a and experienced firsthand the length and limitations of this methodology. Among the three steps, the oxidation of the NacNac–copper complex is especially inconvenient and wasteful, as it consists of a continuous bubbling of pure dioxygen in a warm solution for two days.6a Recently, we released a parented, though in principle far simpler, oxidation of tetrakis(dimethylamino) vinamidinium 3 into di(amidinium)ketone 42+ with meta-chloroperbenzoic acid (m-CPBA) as oxidant. Our initial focus was on the corresponding radical 4˙+, which was found remarkably air-persistent, despite minimal steric hindrance.10 Herein we report how further assessment of such 1,3-(diamino)oxyallyl radical cations ultimately led to a straightforward protocole for the synthesis of α-keto-β-diimines from NacNac precursors.Prior to 4˙+, only two oxyallyl radical cations had been synthesized from the reaction of rare stable electrophilic carbenes with carbon monoxide.11–13 In principle, the oxidation of vinamidinium salts should provide for a more simple and general route, with no need of sophisticated N-substituents. To probe this assumption, we first considered the oxidative functionalization of the chloride salt of vinamidinium 5+, which was synthesized from N,N-dimethyl-benzamide and 1-dimethylamino-1-phenylethene.14 Addition of m-CPBA at room temperature yielded 2-chlorovinamidium 6 in 71% yield (Scheme 2). This result indicated the competitive formation of meta-chlorobenzoyl hypochlorite Cl(C6H4)CO2Cl, from the reaction of chloride anions with m-CPBA.15 Therefore we proceeded to an anion metathesis. The resulting tetrafluoroborate salt reacted with m-CPBA, but this time to afford 7·H+, which was fully characterized and isolated in 74% yield. Of note, the NMR spectra of vinamidiniums 6 and 7·H+ mostly differ in the 13C chemical shift of their central carbon: 94 and 127 ppm, respectively. They were unambiguously characterized by mass spectrometry analyses and X-ray diffraction studies (Fig. 1).Open in a separate windowScheme 2Redox transformations of di(imidazole)methane and 1,3-di(phenyl) vinamidinium derivatives.Open in a separate windowFig. 1X-ray structures of 6, 7·H+ and 2c,d with thermal ellipsoids drawn at 50% probability level. Most hydrogen atoms, solvent molecules and counter-anions were omitted for clarity.Solutions of 7·H+ featured an EPR signal upon exposure to air. This slow reaction could be brought to fast completion in presence of potassium hydrogenocarbonate. The remarkable persistency under aerobic conditions of the resulting radical (in aerated solutions for several hours) was reminiscent of our previously reported stable oxyallyl radicals, some being similarly synthesized by auto-oxidation of parented enol-cations.11a Therefore, we hypothesized the formation of radical 7˙+. Although the radical ultimately decayed and couldn''t be isolated, the excellent fit between the experimental EPR hyperfine coupling constants16 and the calculated values17 for 7˙+ strongly supported this reasonable assumption (Fig. 2a). The reaction of 7·H+ with excess meta-chloroperbenzoic acid or stronger oxidants, such dibromine or potassium ferricyanate, led to over oxidation and directly afforded EPR-silent mixtures of trione 8 and the corresponding hydrated gem-diol 8·H2O,18 likely through the formation and subsequent hydrolysis of electron-poor di(iminium)ketone 72+.Open in a separate windowFig. 2Experimental isotropic X-band EPR spectra in dichloromethane at room temperature (plain black line) of 7˙+ (a), 10˙+ (b) and a crude reaction mixture of m-CPBA and 1a (c). Simulated spectra (dashed blue line) were obtained with (a) a Lorentzian line-broadening parameter of 0.22 and the following set of hyperfine constants: a(14N) = 8.6 MHz (2 nuclei) and a(1H) = 12.0 MHz (12 nuclei); (b) with a Lorentzian line-broadening parameter of 0.013 and the following set of hyperfine constants: a(14N) = 3.1 MHz (4 nuclei), a(1H) = 6.5 MHz (12 nuclei) and a(1H) = 0.86 MHz (4 nuclei); (c) with a Lorentzian line-broadening parameter of 0.37 and the following set of hyperfine constants: a(14N) = 7.8 MHz (2 nuclei), a(1H) = 16.5 MHz (1 nucleus) and a(1H) = 15.6 MHz (6 nuclei).We turned to mono(methine)cyanine 9 featuring electron-richer benzimidazole patterns.19 However, the reaction of 9 with m-CPBA afforded known20 1,3-dimethyl- benzimidazolium 10, and not the expected di(benzimidazolium)ketone 132+ (Scheme 2). Note that uncompleted, but clean, formation of 10 was still observed when adding sub-stoichiometric (one equivalent) m-CPBA over one hour at −78 °C. Importantly, dication 132+ could be finally synthesized by the oxidation of di(imine)methane 1119 by m-CPBA, followed by di(alkylation) of the resulting di(imine)ketone 12. Given that 132+ was found almost unreactive towards water, the formation of 10 from 9 results from further oxidative cleavages of 132+, and not its hydrolysis.21 According to cyclic voltammetry experiments, 132+ undergoes successive reductions at E1/2 = −0.12 V vs. Fc/Fc+ (reversible) and Epc = −0.9 V (with further chemical evolution), which we attributed to the formation of radical cation 13˙+ and zwitterionic oxyallyl 13, respectively (see ESI). We performed the electrochemical reduction of a solution of 132+ in acetonitrile at E = −0.5 V. The stoichiometry (one coulomb per mole of substrate), the observation of a strong EPR signal, as well as an excellent fit between experimental and theoretical hyperfine coupling constants, confirmed the formation of persistent 13˙+ (Fig. 2b), which ultimately decayed at room temperature after several hours.The formation of di(imine)ketone 12 from 11 was so clean that it prompted us to explore further the direct oxidation of NacNac precursors. To our delight, treatment of 1a22 afforded 2a in 98% yield. In contrast with the former long and tedious syntheses from literature, the one-step reaction was completed after one hour at room temperature on multigram scales. EPR monitoring of the reaction showed the formation of a paramagnetic intermediate. Simulation of the hyperfine structure of the spectra required significant coupling with a single proton, in addition to two equivalent nitrogen atoms and six protons (Fig. 2c). This suggested the transient formation of N-protonated radical 1a·H˙+, parented to 4˙+, 7˙+ and 13˙+, thus implying closely related pathways for the m-CPBA oxidation of vinamidiniums and vinamidine 1a.The only few reported β-di(imine)ketones were derivatives of acetylacetone and ortho-substituted anilines. Apart from 1a, which can be stored for several days, they were described as unstable ligands, to be used as soon as synthesized.6d We applied our protocole to vinamidine 1b21 with 2,4,6-trimethylaryl N-substituents and, indeed, the resulting ketone 2b decayed into a complex mixture within hours. Fast work-up allowed for its isolation in 75% yield (Scheme 3). However, even freshly crystalized 2b contained an impurity with similar NMR chemical shifts, except for a 13C NMR signal (quarternary carbon) at 94 ppm in place of the CO band of 2b at 194 ppm. Although the instability of 2b limited further investigations, drying crystals in vacuo in presence of P2O5 decreased the amount of impurity, allowing us to assign this latter to the corresponding hydrated gem-diol 2b·H20.23,24Open in a separate windowScheme 3One-step synthesis of α-keto-β-diimines 2a–d from vinamidines 1a–d.Finally, we considered vinamidines 1c25 and 1d,4b,d with phenyl and di(methyl)amino R groups, respectively. The corresponding di(imine)ketones 2c,d, which are out of reach of previous methods, were isolated in 86–87% yield. They features similar key structural data (IRATR: ν = 1700 cm−1; 13C NMR δCO = 194–191 ppm). Their structures were asserted by a structural X-ray diffraction study (Fig. 1). Importantly, in ketones 2c,d were found remarkably bench stable and have been stored for month with no noticeable degradation.In conclusion, the synthesis and characterization of radicals 7˙+ and 13˙+ are further evidences that introducing 1,3-di(amino)oxyallyl patterns is a robust principle for the design of persistent radical cations. However, the outcome of the reaction of vinamidiniums with m-CPBA is too dependent of the substitution pattern to constitute a general route and over-oxidation is only manageable with extra electron-donating amino groups. In contrast, when applied to vinamidines, this protocol allows for a straightforward synthesis of α-keto-β-diimines. In addition to its simplicity, stable derivatives were isolated, with unprecedented bulky or electron-donating R groups. We are now evaluating these new ligands for nickel-initiated polymerization of ethylene.  相似文献   
63.
64.
65.

Purpose

Long-term use of rosuvastatin may be associated with myotoxicity. Statins are one of the groups commonly found to be associated with neuromuscular weakness. The present study was designed to investigate the interaction between rosuvastatin and rocuronium in vivo by using a sciatic-gastrocnemius nerve-muscle preparation of rat.

Methods

In our study groups, animals received rosuvastatin 2 mg/kg for 14 and 28 days. Train of four (TOF) stimulation was applied to the sciatic nerve, and gastrocnemius muscle contractions were recorded in Wistar albino rats. Intravenous infusion of rocuronium was given until the twitch responses were abolished. We ultimately compared the effective dose required for a desired effect in 95% of the population (ED95), duration 25 %, deep block, recovery index, and time for returning of TOF ratio to 0.9 between the active control and study groups.

Results

Chronic administration of rosuvastatin at a dose of 2 mg/kg for 28 days significantly reduced the ED95 of rocuronium as compared to the active control group. Deep block and duration 25 % were increased by 3.5 and 2.5 times, respectively, compared to the active control group. The spontaneous recovery of neuromuscular block was delayed, as evidenced by the prolonged recovery index and increase in time required for a return of the TOF ratio to 0.9.

Conclusion

The neuromuscular blocking potency of rocuronium is increased and recovery is delayed in rats that pre-treated with rosuvastatin.  相似文献   
66.
67.
Molecular Imaging and Biology - Scintigraphic imaging of malignant glioblastoma (MG) continues to be challenging. We hypothesized that VPAC1 cell surface receptors can be targeted for positron...  相似文献   
68.
We have investigated the effect of shilajit on lipid peroxidation and glutathione content in rat liver homogenate. It inhibited lipid peroxidation induced by cumene hydroperoxide and ADP/Fe++ complex in a dose dependent manner. It also reduced the rate of oxidation of reduced glutathione content and inhibited ongoing lipid peroxidation, induced by these agents immediately after its addition to the incubation system.  相似文献   
69.
Ursolic acid isolated from the leaves and stems of Duboisia myoporoides (Solanaceae) was bioassayed by leaf disc method for feeding deterrence using Spilosoma obliqua and Spodoptera litura as test insects. This compound was proved to be a potent antifeedant under laboratory conditions. Azadirachtin was used as standard. Ursolic acid produced 90.12% and 91.96% inhibition at 5000 ppm concentration, respectively, against S. obliqua and S. litura .  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号